Rédei symbols and arithmetical mild pro-2-groups

Generalizing results of Morishita and Vogel, an explicit description of the triple Massey product for the Galois group $$G_S(2)$$GS(2)of the maximal 2-extension of $$\mathbb {Q}$$Qunramified outside a finite set of prime numbers $$S$$Scontaining 2 is given in terms of Rédei symbols. We show that ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gärtner, Jochen (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 29 July 2014
In: Annales mathématiques du Québec
Year: 2014, Jahrgang: 38, Heft: 1, Pages: 13-36
ISSN:2195-4763
DOI:10.1007/s40316-014-0021-3
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s40316-014-0021-3
Volltext
Verfasserangaben:Jochen Gärtner
Beschreibung
Zusammenfassung:Generalizing results of Morishita and Vogel, an explicit description of the triple Massey product for the Galois group $$G_S(2)$$GS(2)of the maximal 2-extension of $$\mathbb {Q}$$Qunramified outside a finite set of prime numbers $$S$$Scontaining 2 is given in terms of Rédei symbols. We show that certain mild pro-$$2$$2-groups with Zassenhaus invariant $$3$$3occur as Galois groups of the form $$G_S(2)$$GS(2). Furthermore, a non-analytic mild fab pro-$$2$$2-group having only $$3$$3generators is constructed.
Beschreibung:Gesehen am 28.07.2020
Beschreibung:Online Resource
ISSN:2195-4763
DOI:10.1007/s40316-014-0021-3