An important impact of the molecule-electrode coupling asymmetry on the efficiency of bias-driven redox processes in molecular junctions

Two recent experimental and theoretical studies (Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 1282-1287; Phys. Chem. Chem. Phys., 2014, 16, 25942-25949) have addressed the problem of tuning the molecular charge and vibrational properties of single molecules embedded in nanojunctions. These are molecu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bâldea, Ioan (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 06 May 2015
In: Physical chemistry, chemical physics
Year: 2015, Jahrgang: 17, Heft: 24, Pages: 15756-15763
ISSN:1463-9084
DOI:10.1039/C5CP01805F
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1039/C5CP01805F
Verlag, lizenzpflichtig, Volltext: https://pubs.rsc.org/en/content/articlelanding/2015/cp/c5cp01805f
Volltext
Verfasserangaben:Ioan Bâldea
Beschreibung
Zusammenfassung:Two recent experimental and theoretical studies (Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 1282-1287; Phys. Chem. Chem. Phys., 2014, 16, 25942-25949) have addressed the problem of tuning the molecular charge and vibrational properties of single molecules embedded in nanojunctions. These are molecular characteristics escaping so far from an efficient experimental control in broad ranges. Here, we present a general argument demonstrating why, out of various experimental platforms possible, those wherein active molecules are asymmetrically coupled to electrodes are to be preferred to those symmetrically coupled for achieving a(n almost) complete redox process, and why an electrochemical environment has advantages over “dry” setups. This study aims at helping to nanofabricate molecular junctions using the most appropriate platforms allowing the broadest possible bias-driven control over the redox state and vibrational modes of single molecules linked to electrodes.
Beschreibung:Gesehen am 29.07.2020
Beschreibung:Online Resource
ISSN:1463-9084
DOI:10.1039/C5CP01805F