Convex hull characterizations of lexicographic orderings

Given a p-dimensional nonnegative, integral vector $$\varvec{\alpha },$$α,this paper characterizes the convex hull of the set S of nonnegative, integral vectors $$\varvec{x}$$xthat is lexicographically less than or equal to $$\varvec{\alpha }.$$α.To obtain a finite number of elements in S, the vect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Adams, Warren (VerfasserIn) , Belotti, Pietro (VerfasserIn) , Shen, Ruobing (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 25 April 2016
In: Journal of global optimization
Year: 2016, Jahrgang: 66, Heft: 2, Pages: 311-329
ISSN:1573-2916
DOI:10.1007/s10898-016-0435-3
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10898-016-0435-3
Volltext
Verfasserangaben:Warren Adams, Pietro Belotti, Ruobing Shen
Beschreibung
Zusammenfassung:Given a p-dimensional nonnegative, integral vector $$\varvec{\alpha },$$α,this paper characterizes the convex hull of the set S of nonnegative, integral vectors $$\varvec{x}$$xthat is lexicographically less than or equal to $$\varvec{\alpha }.$$α.To obtain a finite number of elements in S, the vectors $$\varvec{x}$$xare restricted to be component-wise upper-bounded by an integral vector $$\varvec{u}.$$u.We show that a linear number of facets is sufficient to describe the convex hull. For the special case in which every entry of $$\varvec{u}$$utakes the same value $$(n-1)$$(n-1)for some integer
Beschreibung:Gesehen am 03.08.2020
Beschreibung:Online Resource
ISSN:1573-2916
DOI:10.1007/s10898-016-0435-3