Planck 2015 results: XXI. The integrated Sachs-Wolfe effect

This paper presents a study of the integrated Sachs-Wolfe (ISW) effect from the <i>Planck<i/> 2015 temperature and polarization data release. This secondary cosmic microwave background (CMB) anisotropy caused by the large-scale time-evolving gravitational potential is probed from differe...

Full description

Saved in:
Bibliographic Details
Main Authors: Ade, Peter A. (Author) , Pettorino, Valeria (Author) , Schäfer, Björn Malte (Author)
Format: Article (Journal)
Language:English
Published: 20 September 2016
In: Astronomy and astrophysics
Year: 2016, Volume: 594, Pages: 1-20
ISSN:1432-0746
DOI:10.1051/0004-6361/201525831
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1051/0004-6361/201525831
Verlag, lizenzpflichtig, Volltext: https://www.aanda.org/articles/aa/abs/2016/10/aa25831-15/aa25831-15.html
Get full text
Author Notes:Planck Collaboration: P.A.R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A.J. Banday, R.B. Barreiro, N. Bartolo, S. Basak, E. Battaner, K. Benabed, A. Benoît, A. Benoit-Lévy, J.-P. Bernard, M. Bersanelli, P. Bielewicz, J.J. Bock, A. Bonaldi, L. Bonavera, J.R. Bond, J. Borrill, F.R. Bouchet, M. Bucher, C. Burigana, R.C. Butler, E. Calabrese, J.-F. Cardoso, B. Casaponsa, A. Catalano, A. Challinor, A. Chamballu, H.C. Chiang, P.R. Christensen, S. Church, D.L. Clements, S. Colombi, L.P.L. Colombo, C. Combet, F. Couchot, A. Coulais, B.P. Crill, A. Curto, F. Cuttaia, L. Danese, R. D. Davies, R. J. Davis, P. de Bernardis, A. de Rosa, G. de Zotti, J. Delabrouille, F.-X. Désert, J.M. Diego, H. Dole, S. Donzelli, O. Doré, M. Douspis, A. Ducout, X. Dupac, G. Efstathiou, F. Elsner, T.A. Enßlin, H.K. Eriksen, J. Fergusson, R. Fernandez-Cobos, F. Finelli, O. Forni, M. Frailis, A.A. Fraisse, E. Franceschi, A. Frejsel, S. Galeotta, S. Galli, K. Ganga, R.T. Génova-Santos, M. Giard, Y. Giraud-Héraud, E. Gjerløw, J. González-Nuevo, K.M. Górski, S. Gratton, A. Gregorio, A. Gruppuso, J.E. Gudmundsson, F.K. Hansen, D. Hanson, D.L. Harrison, S. Henrot-Versillé, C. Hernández-Monteagudo, D. Herranz, S.R. Hildebrandt, E. Hivon, M. Hobson, W.A. Holmes, A. Hornstrup, W. Hovest, K.M. Huffenberger, G. Hurier, S. Ilić, A.H. Jaffe, T.R. Jaffe, W.C. Jones, M. Juvela, E. Keihänen, R. Keskitalo, T.S. Kisner, R. Kneissl, J. Knoche, M. Kunz, H. Kurki-Suonio, G. Lagache, A. Lähteenmäki, J.-M. Lamarre, M. Langer, A. Lasenby, M. Lattanzi, C.R. Lawrence, R. Leonardi, J. Lesgourgues, F. Levrier, M. Liguori, P. B. Lilje, M. Linden-Vørnle, M. López-Caniego, P.M. Lubin, Y.-Z. Ma, J.F. Macías-Pérez, G. Maggio, D. Maino, N. Mandolesi, A. Mangilli, A. Marcos-Caballero, M. Maris, P.G. Martin, E. Martínez-González, S. Masi, S. Matarrese, P. McGehee, P.R. Meinhold, A. Melchiorri, L. Mendes, A. Mennella, M. Migliaccio, S. Mitra, M.-A. Miville-Deschênes, A. Moneti, L. Montier, G. Morgante, D. Mortlock, A. Moss, D. Munshi, J.A. Murphy, P. Naselsky, F. Nati, P. Natoli, C.B. Netterfield, H.U. Nørgaard-Nielsen, F. Noviello, D. Novikov, I. Novikov, C.A. Oxborrow, F. Paci, L. Pagano, F. Pajot, D. Paoletti, F. Pasian, G. Patanchon, O. Perdereau, L. Perotto, F. Perrotta, V. Pettorino, F. Piacentini, M. Piat, E. Pierpaoli, D. Pietrobon, S. Plaszczynski, E. Pointecouteau, G. Polenta, L. Popa, G.W. Pratt, G. Prézeau, S. Prunet, J.-L. Puget, J.P. Rachen, W.T. Reach, R. Rebolo, M. Reinecke, M. Remazeilles, C. Renault, A. Renzi, I. Ristorcelli, G. Rocha, C. Rosset, M. Rossetti, G. Roudier, J.A. Rubiño-Martín, B. Rusholme, M. Sandri, D. Santos, M. Savelainen, G. Savini, B.M. Schaefer, D. Scott, M.D. Seiffert, E.P.S. Shellard, L.D. Spencer, V. Stolyarov, R. Stompor, R. Sudiwala, R. Sunyaev, D. Sutton, A.-S. Suur-Uski, J.-F. Sygnet, J.A. Tauber, L. Terenzi, L. Toffolatti, M. Tomasi, M. Tristram, M. Tucci, J. Tuovinen, L. Valenziano, J. Valiviita, F. Van Tent, P. Vielva, F. Villa, L.A. Wade, B.D. Wandelt, I.K. Wehus, D. Yvon, A. Zacchei, and A. Zonca
Description
Summary:This paper presents a study of the integrated Sachs-Wolfe (ISW) effect from the <i>Planck<i/> 2015 temperature and polarization data release. This secondary cosmic microwave background (CMB) anisotropy caused by the large-scale time-evolving gravitational potential is probed from different perspectives. The CMB is cross-correlated with different large-scale structure (LSS) tracers: radio sources from the NVSS catalogue; galaxies from the optical SDSS and the infrared WISE surveys; and the <i>Planck<i/> 2015 convergence lensing map. The joint cross-correlation of the CMB with the tracers yields a detection at 4<i>σ<i/> where most of the signal-to-noise is due to the <i>Planck<i/> lensing and the NVSS radio catalogue. In fact, the ISW effect is detected from the <i>Planck<i/> data only at ≈3<i>σ<i/> (through the ISW-lensing bispectrum), which is similar to the detection level achieved by combining the cross-correlation signal coming from all the galaxy catalogues mentioned above. We study the ability of the ISW effect to place constraints on the dark-energy parameters; in particular, we show that Ω<sub>Λ<sub/> is detected at more than 3<i>σ<i/>. This cross-correlation analysis is performed only with the <i>Planck<i/> temperature data, since the polarization scales available in the 2015 release do not permit significant improvement of the CMB-LSS cross-correlation detectability. Nevertheless, the <i>Planck<i/> polarization data are used to study the anomalously large ISW signal previously reported through the aperture photometry on stacked CMB features at the locations of known superclusters and supervoids, which is in conflict with ΛCDM expectations. We find that the current <i>Planck<i/> polarization data do not exclude that this signal could be caused by the ISW effect. In addition, the stacking of the <i>Planck<i/> lensing map on the locations of superstructures exhibits a positive cross-correlation with these large-scale structures. Finally, we have improved our previous reconstruction of the ISW temperature fluctuations by combining the information encoded in all the previously mentioned LSS tracers. In particular, we construct a map of the ISW secondary anisotropies and the corresponding uncertainties map, obtained from simulations. We also explore the reconstruction of the ISW anisotropies caused by the large-scale structure traced by the 2MASS Photometric Redshift Survey (2MPZ) by directly inverting the density field into the gravitational potential field.
Item Description:Gesehen am 06.08.2020
Physical Description:Online Resource
ISSN:1432-0746
DOI:10.1051/0004-6361/201525831