Implications of inhomogeneous metal mixing for stellar archaeology
The first supernovae enrich the previously pristine gas with metals, out of which the next generation of stars form. Based on hydrodynamical simulations, we develop a new stochastic model to predict the metallicity of star-forming gas in the first galaxies. On average, in internally enriched galaxie...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
2020 July 2
|
| In: |
The astrophysical journal
Year: 2020, Volume: 897, Issue: 1 |
| ISSN: | 1538-4357 |
| DOI: | 10.3847/1538-4357/ab960d |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3847/1538-4357/ab960d |
| Author Notes: | Yuta Tarumi, Tilman Hartwig, and Mattis Magg |
| Summary: | The first supernovae enrich the previously pristine gas with metals, out of which the next generation of stars form. Based on hydrodynamical simulations, we develop a new stochastic model to predict the metallicity of star-forming gas in the first galaxies. On average, in internally enriched galaxies, the metals are well mixed with the pristine gas. However, in externally enriched galaxies, the metals cannot easily penetrate into the dense gas, which yields a significant metallicity difference between the star-forming and average gas inside a halo. To study the consequences of this effect, we apply a semianalytical model to Milky Way-like dark matter merger trees and follow stellar fossils from high redshift until the present day with a novel realistic metal mixing recipe. We calibrate the model to reproduce the metallicity distribution function (MDF) at low metallicities and find that a primordial initial mass function (IMF) with a slope of from 2 to best reproduces the MDF. Our improved model for inhomogeneous mixing can have a large impact for individual minihalos but does not significantly influence the modeled MDF at [Fe/H] ≳ −4 or the best-fitting Population III IMF. |
|---|---|
| Item Description: | Gesehen am 13.08.2020 |
| Physical Description: | Online Resource |
| ISSN: | 1538-4357 |
| DOI: | 10.3847/1538-4357/ab960d |