The monodromy conjecture for plane meromorphic germs

A notion of Milnor fibration for meromorphic functions and the corresponding concepts of monodromy and monodromy zeta function have been introduced by Gusein-Zade, Luengo and Melle-Hernández [‘Zeta functions for germs of meromorphic functions, and Newton diagrams’, Funct. Anal. Appl. 32 (1998)]. In...

Full description

Saved in:
Bibliographic Details
Main Authors: González Villa, Manuel (Author) , Lemahieu, Ann (Author)
Format: Article (Journal)
Language:English
Published: 1 February 2014
In: Bulletin of the London Mathematical Society
Year: 2014, Volume: 46, Issue: 3, Pages: 441-453
ISSN:1469-2120
DOI:10.1112/blms/bdt098
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1112/blms/bdt098
Verlag, lizenzpflichtig, Volltext: https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/blms/bdt098
Get full text
Author Notes:Manuel González Villa and Ann Lemahieu
Description
Summary:A notion of Milnor fibration for meromorphic functions and the corresponding concepts of monodromy and monodromy zeta function have been introduced by Gusein-Zade, Luengo and Melle-Hernández [‘Zeta functions for germs of meromorphic functions, and Newton diagrams’, Funct. Anal. Appl. 32 (1998)]. In this article, we define the topological zeta function for meromorphic germs and we study its poles in the plane case. We show that the poles do not behave as in the holomorphic case but still do satisfy a generalization of the monodromy conjecture.
Item Description:Gesehen am 18.08.2020
Physical Description:Online Resource
ISSN:1469-2120
DOI:10.1112/blms/bdt098