Translating the Cantor set by a random real

We determine the constructive dimension of points in random translates of the Cantor set. The Cantor set ``cancels randomness'' in the sense that some of its members, when added to Martin-Löf random reals, identify a point with lower constructive dimension than the random itself. In parti...

Full description

Saved in:
Bibliographic Details
Main Authors: Dougherty, Randall (Author) , Lutz, Jack (Author) , Mauldin, R. Daniel (Author) , Teutsch, Jason (Author)
Format: Article (Journal)
Language:English
Published: January 8, 2014
In: Transactions of the American Mathematical Society
Year: 2014, Volume: 366, Issue: 6, Pages: 3027-3041
ISSN:1088-6850
DOI:10.1090/S0002-9947-2014-05912-6
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1090/S0002-9947-2014-05912-6
Verlag, lizenzpflichtig, Volltext: https://www.ams.org/tran/2014-366-06/S0002-9947-2014-05912-6/
Get full text
Author Notes:Randall Dougherty, Jack Lutz, R. Daniel Mauldin, and Jason Teutsch
Description
Summary:We determine the constructive dimension of points in random translates of the Cantor set. The Cantor set ``cancels randomness'' in the sense that some of its members, when added to Martin-Löf random reals, identify a point with lower constructive dimension than the random itself. In particular, we find the Hausdorff dimension of the set of points in a random Cantor set translate with a given constructive dimension.
Item Description:Gesehen am 24.08.2020
Physical Description:Online Resource
ISSN:1088-6850
DOI:10.1090/S0002-9947-2014-05912-6