Translating the Cantor set by a random real
We determine the constructive dimension of points in random translates of the Cantor set. The Cantor set ``cancels randomness'' in the sense that some of its members, when added to Martin-Löf random reals, identify a point with lower constructive dimension than the random itself. In parti...
Gespeichert in:
| Hauptverfasser: | , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
January 8, 2014
|
| In: |
Transactions of the American Mathematical Society
Year: 2014, Jahrgang: 366, Heft: 6, Pages: 3027-3041 |
| ISSN: | 1088-6850 |
| DOI: | 10.1090/S0002-9947-2014-05912-6 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1090/S0002-9947-2014-05912-6 Verlag, lizenzpflichtig, Volltext: https://www.ams.org/tran/2014-366-06/S0002-9947-2014-05912-6/ |
| Verfasserangaben: | Randall Dougherty, Jack Lutz, R. Daniel Mauldin, and Jason Teutsch |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1727686659 | ||
| 003 | DE-627 | ||
| 005 | 20220818182413.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200824s2014 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1090/S0002-9947-2014-05912-6 |2 doi | |
| 035 | |a (DE-627)1727686659 | ||
| 035 | |a (DE-599)KXP1727686659 | ||
| 035 | |a (OCoLC)1341355882 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Dougherty, Randall |e VerfasserIn |0 (DE-588)1216454337 |0 (DE-627)1727687744 |4 aut | |
| 245 | 1 | 0 | |a Translating the Cantor set by a random real |c Randall Dougherty, Jack Lutz, R. Daniel Mauldin, and Jason Teutsch |
| 264 | 1 | |c January 8, 2014 | |
| 300 | |a 15 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 24.08.2020 | ||
| 520 | |a We determine the constructive dimension of points in random translates of the Cantor set. The Cantor set ``cancels randomness'' in the sense that some of its members, when added to Martin-Löf random reals, identify a point with lower constructive dimension than the random itself. In particular, we find the Hausdorff dimension of the set of points in a random Cantor set translate with a given constructive dimension. | ||
| 650 | 4 | |a additive number theory | |
| 650 | 4 | |a Algorithmic randomness | |
| 650 | 4 | |a fractal geometry | |
| 700 | 1 | |a Lutz, Jack |e VerfasserIn |4 aut | |
| 700 | 1 | |a Mauldin, R. Daniel |e VerfasserIn |4 aut | |
| 700 | 1 | |a Teutsch, Jason |e VerfasserIn |0 (DE-588)1157025145 |0 (DE-627)1020025492 |0 (DE-576)502579501 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a American Mathematical Society |t Transactions of the American Mathematical Society |d Providence, RI : Soc., 1900 |g 366(2014), 6, Seite 3027-3041 |h Online-Ressource |w (DE-627)269247351 |w (DE-600)1474637-2 |w (DE-576)079876110 |x 1088-6850 |7 nnas |
| 773 | 1 | 8 | |g volume:366 |g year:2014 |g number:6 |g pages:3027-3041 |g extent:15 |a Translating the Cantor set by a random real |
| 856 | 4 | 0 | |u https://doi.org/10.1090/S0002-9947-2014-05912-6 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.ams.org/tran/2014-366-06/S0002-9947-2014-05912-6/ |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200824 | ||
| 993 | |a Article | ||
| 994 | |a 2014 | ||
| 998 | |g 1157025145 |a Teutsch, Jason |m 1157025145:Teutsch, Jason |p 4 |y j | ||
| 999 | |a KXP-PPN1727686659 |e 3742363824 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"note":["Gesehen am 24.08.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1727686659","person":[{"family":"Dougherty","given":"Randall","roleDisplay":"VerfasserIn","display":"Dougherty, Randall","role":"aut"},{"display":"Lutz, Jack","roleDisplay":"VerfasserIn","role":"aut","family":"Lutz","given":"Jack"},{"family":"Mauldin","given":"R. Daniel","display":"Mauldin, R. Daniel","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Jason","family":"Teutsch","role":"aut","display":"Teutsch, Jason","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Translating the Cantor set by a random real","title":"Translating the Cantor set by a random real"}],"physDesc":[{"extent":"15 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1088-6850"],"eki":["269247351"],"zdb":["1474637-2"]},"origin":[{"dateIssuedDisp":"1900-","publisher":"Soc.","dateIssuedKey":"1900","publisherPlace":"Providence, RI"}],"language":["eng"],"corporate":[{"role":"aut","display":"American Mathematical Society","roleDisplay":"VerfasserIn"}],"recId":"269247351","type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"American Mathematical SocietyTransactions of the American Mathematical Society","note":["Gesehen am 09.07.24"],"part":{"extent":"15","volume":"366","text":"366(2014), 6, Seite 3027-3041","pages":"3027-3041","issue":"6","year":"2014"},"pubHistory":["1.1900 -"],"title":[{"title":"Transactions of the American Mathematical Society","title_sort":"Transactions of the American Mathematical Society"}]}],"name":{"displayForm":["Randall Dougherty, Jack Lutz, R. Daniel Mauldin, and Jason Teutsch"]},"origin":[{"dateIssuedDisp":"January 8, 2014","dateIssuedKey":"2014"}],"id":{"eki":["1727686659"],"doi":["10.1090/S0002-9947-2014-05912-6"]}} | ||
| SRT | |a DOUGHERTYRTRANSLATIN8201 | ||