Translating the Cantor set by a random real

We determine the constructive dimension of points in random translates of the Cantor set. The Cantor set ``cancels randomness'' in the sense that some of its members, when added to Martin-Löf random reals, identify a point with lower constructive dimension than the random itself. In parti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dougherty, Randall (VerfasserIn) , Lutz, Jack (VerfasserIn) , Mauldin, R. Daniel (VerfasserIn) , Teutsch, Jason (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: January 8, 2014
In: Transactions of the American Mathematical Society
Year: 2014, Jahrgang: 366, Heft: 6, Pages: 3027-3041
ISSN:1088-6850
DOI:10.1090/S0002-9947-2014-05912-6
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1090/S0002-9947-2014-05912-6
Verlag, lizenzpflichtig, Volltext: https://www.ams.org/tran/2014-366-06/S0002-9947-2014-05912-6/
Volltext
Verfasserangaben:Randall Dougherty, Jack Lutz, R. Daniel Mauldin, and Jason Teutsch

MARC

LEADER 00000caa a2200000 c 4500
001 1727686659
003 DE-627
005 20220818182413.0
007 cr uuu---uuuuu
008 200824s2014 xx |||||o 00| ||eng c
024 7 |a 10.1090/S0002-9947-2014-05912-6  |2 doi 
035 |a (DE-627)1727686659 
035 |a (DE-599)KXP1727686659 
035 |a (OCoLC)1341355882 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Dougherty, Randall  |e VerfasserIn  |0 (DE-588)1216454337  |0 (DE-627)1727687744  |4 aut 
245 1 0 |a Translating the Cantor set by a random real  |c Randall Dougherty, Jack Lutz, R. Daniel Mauldin, and Jason Teutsch 
264 1 |c January 8, 2014 
300 |a 15 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 24.08.2020 
520 |a We determine the constructive dimension of points in random translates of the Cantor set. The Cantor set ``cancels randomness'' in the sense that some of its members, when added to Martin-Löf random reals, identify a point with lower constructive dimension than the random itself. In particular, we find the Hausdorff dimension of the set of points in a random Cantor set translate with a given constructive dimension. 
650 4 |a additive number theory 
650 4 |a Algorithmic randomness 
650 4 |a fractal geometry 
700 1 |a Lutz, Jack  |e VerfasserIn  |4 aut 
700 1 |a Mauldin, R. Daniel  |e VerfasserIn  |4 aut 
700 1 |a Teutsch, Jason  |e VerfasserIn  |0 (DE-588)1157025145  |0 (DE-627)1020025492  |0 (DE-576)502579501  |4 aut 
773 0 8 |i Enthalten in  |a American Mathematical Society  |t Transactions of the American Mathematical Society  |d Providence, RI : Soc., 1900  |g 366(2014), 6, Seite 3027-3041  |h Online-Ressource  |w (DE-627)269247351  |w (DE-600)1474637-2  |w (DE-576)079876110  |x 1088-6850  |7 nnas 
773 1 8 |g volume:366  |g year:2014  |g number:6  |g pages:3027-3041  |g extent:15  |a Translating the Cantor set by a random real 
856 4 0 |u https://doi.org/10.1090/S0002-9947-2014-05912-6  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.ams.org/tran/2014-366-06/S0002-9947-2014-05912-6/  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200824 
993 |a Article 
994 |a 2014 
998 |g 1157025145  |a Teutsch, Jason  |m 1157025145:Teutsch, Jason  |p 4  |y j 
999 |a KXP-PPN1727686659  |e 3742363824 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 24.08.2020"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"language":["eng"],"recId":"1727686659","person":[{"family":"Dougherty","given":"Randall","roleDisplay":"VerfasserIn","display":"Dougherty, Randall","role":"aut"},{"display":"Lutz, Jack","roleDisplay":"VerfasserIn","role":"aut","family":"Lutz","given":"Jack"},{"family":"Mauldin","given":"R. Daniel","display":"Mauldin, R. Daniel","roleDisplay":"VerfasserIn","role":"aut"},{"given":"Jason","family":"Teutsch","role":"aut","display":"Teutsch, Jason","roleDisplay":"VerfasserIn"}],"title":[{"title_sort":"Translating the Cantor set by a random real","title":"Translating the Cantor set by a random real"}],"physDesc":[{"extent":"15 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["1088-6850"],"eki":["269247351"],"zdb":["1474637-2"]},"origin":[{"dateIssuedDisp":"1900-","publisher":"Soc.","dateIssuedKey":"1900","publisherPlace":"Providence, RI"}],"language":["eng"],"corporate":[{"role":"aut","display":"American Mathematical Society","roleDisplay":"VerfasserIn"}],"recId":"269247351","type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"American Mathematical SocietyTransactions of the American Mathematical Society","note":["Gesehen am 09.07.24"],"part":{"extent":"15","volume":"366","text":"366(2014), 6, Seite 3027-3041","pages":"3027-3041","issue":"6","year":"2014"},"pubHistory":["1.1900 -"],"title":[{"title":"Transactions of the American Mathematical Society","title_sort":"Transactions of the American Mathematical Society"}]}],"name":{"displayForm":["Randall Dougherty, Jack Lutz, R. Daniel Mauldin, and Jason Teutsch"]},"origin":[{"dateIssuedDisp":"January 8, 2014","dateIssuedKey":"2014"}],"id":{"eki":["1727686659"],"doi":["10.1090/S0002-9947-2014-05912-6"]}} 
SRT |a DOUGHERTYRTRANSLATIN8201