A multi-sensor fusion framework based on coupled residual convolutional neural networks

Multi-sensor remote sensing image classification has been considerably improved by deep learning feature extraction and classification networks. In this paper, we propose a novel multi-sensor fusion framework for the fusion of diverse remote sensing data sources. The novelty of this paper is grounde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Hao (VerfasserIn) , Ghamisi, Pedram (VerfasserIn) , Rasti, Behnood (VerfasserIn) , Wu, Zhaoyan (VerfasserIn) , Shapiro, Aurelie (VerfasserIn) , Schultz, Michael (VerfasserIn) , Zipf, Alexander (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 26 June 2020
In: Remote sensing
Year: 2020, Jahrgang: 12, Heft: 12
ISSN:2072-4292
DOI:10.3390/rs12122067
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/rs12122067
Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2072-4292/12/12/2067
Volltext
Verfasserangaben:Hao Li, Pedram Ghamisi, Behnood Rasti, Zhaoyan Wu, Aurelie Shapiro, Michael Schultz and Alexander Zipf

MARC

LEADER 00000caa a2200000 c 4500
001 1728955556
003 DE-627
005 20220818192148.0
007 cr uuu---uuuuu
008 200907s2020 xx |||||o 00| ||eng c
024 7 |a 10.3390/rs12122067  |2 doi 
035 |a (DE-627)1728955556 
035 |a (DE-599)KXP1728955556 
035 |a (OCoLC)1341358691 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 31  |2 sdnb 
100 1 |a Li, Hao  |e VerfasserIn  |0 (DE-588)1197649670  |0 (DE-627)1679340883  |4 aut 
245 1 2 |a A multi-sensor fusion framework based on coupled residual convolutional neural networks  |c Hao Li, Pedram Ghamisi, Behnood Rasti, Zhaoyan Wu, Aurelie Shapiro, Michael Schultz and Alexander Zipf 
264 1 |c 26 June 2020 
300 |a 21 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.09.2020 
520 |a Multi-sensor remote sensing image classification has been considerably improved by deep learning feature extraction and classification networks. In this paper, we propose a novel multi-sensor fusion framework for the fusion of diverse remote sensing data sources. The novelty of this paper is grounded in three important design innovations: 1- a unique adaptation of the coupled residual networks to address multi-sensor data classification; 2- a smart auxiliary training via adjusting the loss function to address classifications with limited samples; and 3- a unique design of the residual blocks to reduce the computational complexity while preserving the discriminative characteristics of multi-sensor features. The proposed classification framework is evaluated using three different remote sensing datasets: the urban Houston university datasets (including Houston 2013 and the training portion of Houston 2018) and the rural Trento dataset. The proposed framework achieves high overall accuracies of 93.57%, 81.20%, and 98.81% on Houston 2013, the training portion of Houston 2018, and Trento datasets, respectively. Additionally, the experimental results demonstrate considerable improvements in classification accuracies compared with the existing state-of-the-art methods. 
650 4 |a auxiliary loss function 
650 4 |a convolutional neural networks (CNNs) 
650 4 |a data fusion 
650 4 |a deep learning 
650 4 |a hyperspectral image classification 
650 4 |a multi-sensor fusion 
650 4 |a residual learning 
700 1 |a Ghamisi, Pedram  |e VerfasserIn  |4 aut 
700 1 |a Rasti, Behnood  |e VerfasserIn  |4 aut 
700 1 |a Wu, Zhaoyan  |e VerfasserIn  |4 aut 
700 1 |a Shapiro, Aurelie  |e VerfasserIn  |4 aut 
700 1 |a Schultz, Michael  |d 1976-  |e VerfasserIn  |0 (DE-588)102590768X  |0 (DE-627)725523905  |0 (DE-576)370893107  |4 aut 
700 1 |a Zipf, Alexander  |d 1971-  |e VerfasserIn  |0 (DE-588)123246369  |0 (DE-627)082437076  |0 (DE-576)175641056  |4 aut 
773 0 8 |i Enthalten in  |t Remote sensing  |d Basel : MDPI, 2009  |g 12(2020,12) Artikel-Nummer 2067, 21 Seiten  |h Online-Ressource  |w (DE-627)608937916  |w (DE-600)2513863-7  |w (DE-576)310882532  |x 2072-4292  |7 nnas  |a A multi-sensor fusion framework based on coupled residual convolutional neural networks 
773 1 8 |g volume:12  |g year:2020  |g number:12  |g extent:21  |a A multi-sensor fusion framework based on coupled residual convolutional neural networks 
856 4 0 |u https://doi.org/10.3390/rs12122067  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.mdpi.com/2072-4292/12/12/2067  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20200907 
993 |a Article 
994 |a 2020 
998 |g 123246369  |a Zipf, Alexander  |m 123246369:Zipf, Alexander  |d 120000  |d 120700  |e 120000PZ123246369  |e 120700PZ123246369  |k 0/120000/  |k 1/120000/120700/  |p 7  |y j 
998 |g 102590768X  |a Schultz, Michael  |m 102590768X:Schultz, Michael  |d 120000  |d 120700  |e 120000PS102590768X  |e 120700PS102590768X  |k 0/120000/  |k 1/120000/120700/  |p 6 
998 |g 1197649670  |a Li, Hao  |m 1197649670:Li, Hao  |d 120000  |d 120700  |e 120000PL1197649670  |e 120700PL1197649670  |k 0/120000/  |k 1/120000/120700/  |p 1  |x j 
999 |a KXP-PPN1728955556  |e 3747304451 
BIB |a Y 
SER |a journal 
JSO |a {"note":["Gesehen am 07.09.2020"],"recId":"1728955556","person":[{"family":"Li","role":"aut","display":"Li, Hao","given":"Hao"},{"given":"Pedram","display":"Ghamisi, Pedram","role":"aut","family":"Ghamisi"},{"family":"Rasti","role":"aut","display":"Rasti, Behnood","given":"Behnood"},{"role":"aut","family":"Wu","given":"Zhaoyan","display":"Wu, Zhaoyan"},{"family":"Shapiro","role":"aut","display":"Shapiro, Aurelie","given":"Aurelie"},{"role":"aut","family":"Schultz","given":"Michael","display":"Schultz, Michael"},{"role":"aut","family":"Zipf","given":"Alexander","display":"Zipf, Alexander"}],"name":{"displayForm":["Hao Li, Pedram Ghamisi, Behnood Rasti, Zhaoyan Wu, Aurelie Shapiro, Michael Schultz and Alexander Zipf"]},"language":["eng"],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"26 June 2020"}],"relHost":[{"name":{"displayForm":["Molecular Diversity Preservation International (MDPI)"]},"recId":"608937916","physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["2072-4292"],"eki":["608937916"],"zdb":["2513863-7"]},"title":[{"title_sort":"Remote sensing","title":"Remote sensing"}],"origin":[{"dateIssuedKey":"2009","publisherPlace":"Basel","publisher":"MDPI","dateIssuedDisp":"2009-"}],"part":{"year":"2020","volume":"12","issue":"12","extent":"21","text":"12(2020,12) Artikel-Nummer 2067, 21 Seiten"},"language":["eng"],"pubHistory":["1.2009 -"],"note":["Gesehen am 06.09.10"],"disp":"A multi-sensor fusion framework based on coupled residual convolutional neural networksRemote sensing","type":{"media":"Online-Ressource","bibl":"periodical"}}],"id":{"eki":["1728955556"],"doi":["10.3390/rs12122067"]},"physDesc":[{"extent":"21 S."}],"title":[{"title_sort":"multi-sensor fusion framework based on coupled residual convolutional neural networks","title":"A multi-sensor fusion framework based on coupled residual convolutional neural networks"}],"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a LIHAOGHAMIMULTISENSO2620