A multi-sensor fusion framework based on coupled residual convolutional neural networks
Multi-sensor remote sensing image classification has been considerably improved by deep learning feature extraction and classification networks. In this paper, we propose a novel multi-sensor fusion framework for the fusion of diverse remote sensing data sources. The novelty of this paper is grounde...
Gespeichert in:
| Hauptverfasser: | , , , , , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
26 June 2020
|
| In: |
Remote sensing
Year: 2020, Jahrgang: 12, Heft: 12 |
| ISSN: | 2072-4292 |
| DOI: | 10.3390/rs12122067 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/rs12122067 Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2072-4292/12/12/2067 |
| Verfasserangaben: | Hao Li, Pedram Ghamisi, Behnood Rasti, Zhaoyan Wu, Aurelie Shapiro, Michael Schultz and Alexander Zipf |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1728955556 | ||
| 003 | DE-627 | ||
| 005 | 20220818192148.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 200907s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3390/rs12122067 |2 doi | |
| 035 | |a (DE-627)1728955556 | ||
| 035 | |a (DE-599)KXP1728955556 | ||
| 035 | |a (OCoLC)1341358691 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 31 |2 sdnb | ||
| 100 | 1 | |a Li, Hao |e VerfasserIn |0 (DE-588)1197649670 |0 (DE-627)1679340883 |4 aut | |
| 245 | 1 | 2 | |a A multi-sensor fusion framework based on coupled residual convolutional neural networks |c Hao Li, Pedram Ghamisi, Behnood Rasti, Zhaoyan Wu, Aurelie Shapiro, Michael Schultz and Alexander Zipf |
| 264 | 1 | |c 26 June 2020 | |
| 300 | |a 21 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 07.09.2020 | ||
| 520 | |a Multi-sensor remote sensing image classification has been considerably improved by deep learning feature extraction and classification networks. In this paper, we propose a novel multi-sensor fusion framework for the fusion of diverse remote sensing data sources. The novelty of this paper is grounded in three important design innovations: 1- a unique adaptation of the coupled residual networks to address multi-sensor data classification; 2- a smart auxiliary training via adjusting the loss function to address classifications with limited samples; and 3- a unique design of the residual blocks to reduce the computational complexity while preserving the discriminative characteristics of multi-sensor features. The proposed classification framework is evaluated using three different remote sensing datasets: the urban Houston university datasets (including Houston 2013 and the training portion of Houston 2018) and the rural Trento dataset. The proposed framework achieves high overall accuracies of 93.57%, 81.20%, and 98.81% on Houston 2013, the training portion of Houston 2018, and Trento datasets, respectively. Additionally, the experimental results demonstrate considerable improvements in classification accuracies compared with the existing state-of-the-art methods. | ||
| 650 | 4 | |a auxiliary loss function | |
| 650 | 4 | |a convolutional neural networks (CNNs) | |
| 650 | 4 | |a data fusion | |
| 650 | 4 | |a deep learning | |
| 650 | 4 | |a hyperspectral image classification | |
| 650 | 4 | |a multi-sensor fusion | |
| 650 | 4 | |a residual learning | |
| 700 | 1 | |a Ghamisi, Pedram |e VerfasserIn |4 aut | |
| 700 | 1 | |a Rasti, Behnood |e VerfasserIn |4 aut | |
| 700 | 1 | |a Wu, Zhaoyan |e VerfasserIn |4 aut | |
| 700 | 1 | |a Shapiro, Aurelie |e VerfasserIn |4 aut | |
| 700 | 1 | |a Schultz, Michael |d 1976- |e VerfasserIn |0 (DE-588)102590768X |0 (DE-627)725523905 |0 (DE-576)370893107 |4 aut | |
| 700 | 1 | |a Zipf, Alexander |d 1971- |e VerfasserIn |0 (DE-588)123246369 |0 (DE-627)082437076 |0 (DE-576)175641056 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Remote sensing |d Basel : MDPI, 2009 |g 12(2020,12) Artikel-Nummer 2067, 21 Seiten |h Online-Ressource |w (DE-627)608937916 |w (DE-600)2513863-7 |w (DE-576)310882532 |x 2072-4292 |7 nnas |a A multi-sensor fusion framework based on coupled residual convolutional neural networks |
| 773 | 1 | 8 | |g volume:12 |g year:2020 |g number:12 |g extent:21 |a A multi-sensor fusion framework based on coupled residual convolutional neural networks |
| 856 | 4 | 0 | |u https://doi.org/10.3390/rs12122067 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.mdpi.com/2072-4292/12/12/2067 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20200907 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 123246369 |a Zipf, Alexander |m 123246369:Zipf, Alexander |d 120000 |d 120700 |e 120000PZ123246369 |e 120700PZ123246369 |k 0/120000/ |k 1/120000/120700/ |p 7 |y j | ||
| 998 | |g 102590768X |a Schultz, Michael |m 102590768X:Schultz, Michael |d 120000 |d 120700 |e 120000PS102590768X |e 120700PS102590768X |k 0/120000/ |k 1/120000/120700/ |p 6 | ||
| 998 | |g 1197649670 |a Li, Hao |m 1197649670:Li, Hao |d 120000 |d 120700 |e 120000PL1197649670 |e 120700PL1197649670 |k 0/120000/ |k 1/120000/120700/ |p 1 |x j | ||
| 999 | |a KXP-PPN1728955556 |e 3747304451 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"note":["Gesehen am 07.09.2020"],"recId":"1728955556","person":[{"family":"Li","role":"aut","display":"Li, Hao","given":"Hao"},{"given":"Pedram","display":"Ghamisi, Pedram","role":"aut","family":"Ghamisi"},{"family":"Rasti","role":"aut","display":"Rasti, Behnood","given":"Behnood"},{"role":"aut","family":"Wu","given":"Zhaoyan","display":"Wu, Zhaoyan"},{"family":"Shapiro","role":"aut","display":"Shapiro, Aurelie","given":"Aurelie"},{"role":"aut","family":"Schultz","given":"Michael","display":"Schultz, Michael"},{"role":"aut","family":"Zipf","given":"Alexander","display":"Zipf, Alexander"}],"name":{"displayForm":["Hao Li, Pedram Ghamisi, Behnood Rasti, Zhaoyan Wu, Aurelie Shapiro, Michael Schultz and Alexander Zipf"]},"language":["eng"],"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"26 June 2020"}],"relHost":[{"name":{"displayForm":["Molecular Diversity Preservation International (MDPI)"]},"recId":"608937916","physDesc":[{"extent":"Online-Ressource"}],"id":{"issn":["2072-4292"],"eki":["608937916"],"zdb":["2513863-7"]},"title":[{"title_sort":"Remote sensing","title":"Remote sensing"}],"origin":[{"dateIssuedKey":"2009","publisherPlace":"Basel","publisher":"MDPI","dateIssuedDisp":"2009-"}],"part":{"year":"2020","volume":"12","issue":"12","extent":"21","text":"12(2020,12) Artikel-Nummer 2067, 21 Seiten"},"language":["eng"],"pubHistory":["1.2009 -"],"note":["Gesehen am 06.09.10"],"disp":"A multi-sensor fusion framework based on coupled residual convolutional neural networksRemote sensing","type":{"media":"Online-Ressource","bibl":"periodical"}}],"id":{"eki":["1728955556"],"doi":["10.3390/rs12122067"]},"physDesc":[{"extent":"21 S."}],"title":[{"title_sort":"multi-sensor fusion framework based on coupled residual convolutional neural networks","title":"A multi-sensor fusion framework based on coupled residual convolutional neural networks"}],"type":{"media":"Online-Ressource","bibl":"article-journal"}} | ||
| SRT | |a LIHAOGHAMIMULTISENSO2620 | ||