Neural-Guided RANSAC for estimating epipolar geometry [data]
Pre-computed sparse feature correspondences for pairs of images (outdoor and indoor) to reproduce the experiments described in our paper, particularly to train and evaluate NG-RANSAC. For more information, also see the code documentation: https://github.com/vislearn/ngransac
Saved in:
| Main Author: | |
|---|---|
| Format: | Database Research Data |
| Language: | English |
| Published: |
Heidelberg
Universität
2020-09-07
|
| DOI: | 10.11588/data/PCGYET |
| Subjects: | |
| Online Access: | Verlag, kostenfrei, Volltext: https://doi.org/10.11588/data/PCGYET Verlag, kostenfrei, Volltext: https://heidata.uni-heidelberg.de/dataset.xhtml?persistentId=doi:10.11588/data/PCGYET |
| Author Notes: | Eric Brachmann |
| Summary: | Pre-computed sparse feature correspondences for pairs of images (outdoor and indoor) to reproduce the experiments described in our paper, particularly to train and evaluate NG-RANSAC. For more information, also see the code documentation: https://github.com/vislearn/ngransac |
|---|---|
| Item Description: | Production date: 2019-03-31 Gesehen am 14.09.2020 |
| Physical Description: | Online Resource |
| DOI: | 10.11588/data/PCGYET |