Quantum parameter estimation of the frequency and damping of a harmonic oscillator

We determine the quantum Cram\'er-Rao bound for the precision with which the oscillator frequency and damping constant of a damped quantum harmonic oscillator in an arbitrary Gaussian state can be estimated. This goes beyond standard quantum parameter estimation of a single-mode Gaussian state...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Binder, Patrick (VerfasserIn) , Braun, Daniel (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 29 July 2020
In: Physical review
Year: 2020, Jahrgang: 102, Heft: 1
ISSN:2469-9934
DOI:10.1103/PhysRevA.102.012223
Online-Zugang:Verlag, Volltext: https://doi.org/10.1103/PhysRevA.102.012223
Verlag, Volltext: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.012223
Volltext
Verfasserangaben:Patrick Binder and Daniel Braun
Beschreibung
Zusammenfassung:We determine the quantum Cram\'er-Rao bound for the precision with which the oscillator frequency and damping constant of a damped quantum harmonic oscillator in an arbitrary Gaussian state can be estimated. This goes beyond standard quantum parameter estimation of a single-mode Gaussian state for which typically a mode of fixed frequency is assumed. We present a scheme through which the frequency estimation can nevertheless be based on the known results for single-mode quantum parameter estimation with Gaussian states. Based on these results, we investigate the optimal measurement time. For measuring the oscillator frequency, our results unify previously known partial results and constitute an explicit solution for a general single-mode Gaussian state. Furthermore, we show that with existing carbon nanotube resonators see J. Chaste et al. [Nat. Nanotechnol. 7, 301 (2012)] it should be possible to achieve a mass sensitivity of the order of an electron mass ${\mathrm{Hz}}^{\ensuremath{-}1/2}$.
Beschreibung:Gesehen am 25.09.2020
Beschreibung:Online Resource
ISSN:2469-9934
DOI:10.1103/PhysRevA.102.012223