The Möbius-Wall congruences for p-adic L-functions of CM elliptic curves

In this paper we prove, under a technical assumption, the so-called “Möbius-Wall” congruences between abelian p-adic L-functions of CM elliptic curves. These congruences are the analogue of those shown by Ritter and Weiss for the Tate motive, and offer strong evidences in favor of the existence of...

Full description

Saved in:
Bibliographic Details
Main Author: Bouganis, Thanasis (Author)
Format: Article (Journal)
Language:English
Published: 2014
In: Mathematical proceedings of the Cambridge Philosophical Society
Year: 2013, Volume: 156, Issue: 1, Pages: 183-192
ISSN:1469-8064
DOI:10.1017/S0305004113000625
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1017/S0305004113000625
Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/mobiuswall-congruences-for-padic-lfunctions-of-cm-elliptic-curves/CCC3F4486E6F76B1E7332048BCF4E171
Get full text
Author Notes:Thanasis Bouganis
Description
Summary:In this paper we prove, under a technical assumption, the so-called “Möbius-Wall” congruences between abelian p-adic L-functions of CM elliptic curves. These congruences are the analogue of those shown by Ritter and Weiss for the Tate motive, and offer strong evidences in favor of the existence of non-abelian p-adic L-functions for CM elliptic curves.
Item Description:First published online 11 November 2013
Gesehen am 30.09.2020
Physical Description:Online Resource
ISSN:1469-8064
DOI:10.1017/S0305004113000625