The Möbius-Wall congruences for p-adic L-functions of CM elliptic curves

In this paper we prove, under a technical assumption, the so-called “Möbius-Wall” congruences between abelian p-adic L-functions of CM elliptic curves. These congruences are the analogue of those shown by Ritter and Weiss for the Tate motive, and offer strong evidences in favor of the existence of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bouganis, Thanasis (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2014
In: Mathematical proceedings of the Cambridge Philosophical Society
Year: 2013, Jahrgang: 156, Heft: 1, Pages: 183-192
ISSN:1469-8064
DOI:10.1017/S0305004113000625
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1017/S0305004113000625
Verlag, lizenzpflichtig, Volltext: https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/mobiuswall-congruences-for-padic-lfunctions-of-cm-elliptic-curves/CCC3F4486E6F76B1E7332048BCF4E171
Volltext
Verfasserangaben:Thanasis Bouganis
Beschreibung
Zusammenfassung:In this paper we prove, under a technical assumption, the so-called “Möbius-Wall” congruences between abelian p-adic L-functions of CM elliptic curves. These congruences are the analogue of those shown by Ritter and Weiss for the Tate motive, and offer strong evidences in favor of the existence of non-abelian p-adic L-functions for CM elliptic curves.
Beschreibung:First published online 11 November 2013
Gesehen am 30.09.2020
Beschreibung:Online Resource
ISSN:1469-8064
DOI:10.1017/S0305004113000625