Quantum effects dominating the interatomic coulombic decay of an extreme system

LiHe is an extreme open-shell system. It is among the weakest bound systems known, and its mean interatomic distance extends dramatically into the classical forbidden region. Upon 1s → 2p excitation of He, interatomic Coulombic decay (ICD) takes place in which the electronically excited helium atom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ben-Asher, Anael (VerfasserIn) , Landau, Arik (VerfasserIn) , Cederbaum, Lorenz S. (VerfasserIn) , Moiseyev, Nimrod (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: July 24, 2020
In: The journal of physical chemistry letters
Year: 2020, Jahrgang: 11, Heft: 16, Pages: 6600-6605
ISSN:1948-7185
DOI:10.1021/acs.jpclett.0c01974
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1021/acs.jpclett.0c01974
Volltext
Verfasserangaben:Anael Ben-Asher, Arie Landau, Lorenz S. Cederbaum, and Nimrod Moiseyev
Beschreibung
Zusammenfassung:LiHe is an extreme open-shell system. It is among the weakest bound systems known, and its mean interatomic distance extends dramatically into the classical forbidden region. Upon 1s → 2p excitation of He, interatomic Coulombic decay (ICD) takes place in which the electronically excited helium atom relaxes and transfers its excess energy to ionize the neighboring lithium atom. A substantial part of the decay is found to be to the dissociation continuum producing Li+ and He atoms. The distribution of the kinetic energy released by the ICD products is found to be highly oscillatory. Its analysis reveals that quantum phase shifts between the decaying states and the dissociating final states are controlling this ICD reaction. The semiclassical reflection principle, which commonly explains ICD reactions, fails. The process is expected to be amenable to experiment.
Beschreibung:Gesehen am 05.10.2020
Beschreibung:Online Resource
ISSN:1948-7185
DOI:10.1021/acs.jpclett.0c01974