Finite element error estimates on geometrically perturbed domains

We develop error estimates for the finite element approximation of elliptic partial differential equations on perturbed domains, i.e. when the computational domain does not match the real geometry. The result shows that the error related to the domain can be a dominating factor in the finite element...

Full description

Saved in:
Bibliographic Details
Main Authors: Minakowski, Piotr (Author) , Richter, Thomas (Author)
Format: Article (Journal)
Language:English
Published: 24 July 2020
In: Journal of scientific computing
Year: 2020, Volume: 84, Issue: 2
ISSN:1573-7691
DOI:10.25673/71430
Online Access:Resolving-System, kostenfrei: https://opendata.uni-halle.de//handle/1981185920/73382
Resolving-System, kostenfrei: http://dx.doi.org/10.25673/71430
Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10915-020-01285-y
Get full text
Author Notes:Piotr Minakowski, Thomas Richter
Description
Summary:We develop error estimates for the finite element approximation of elliptic partial differential equations on perturbed domains, i.e. when the computational domain does not match the real geometry. The result shows that the error related to the domain can be a dominating factor in the finite element discretization error. The main result consists of $$H^1$$H1- and $$L^2$$L2-error estimates for the Laplace problem. Theoretical considerations are validated by a computational example.
Item Description:Gesehen am 05.10.2020
Physical Description:Online Resource
ISSN:1573-7691
DOI:10.25673/71430