Finite element error estimates on geometrically perturbed domains

We develop error estimates for the finite element approximation of elliptic partial differential equations on perturbed domains, i.e. when the computational domain does not match the real geometry. The result shows that the error related to the domain can be a dominating factor in the finite element...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Minakowski, Piotr (VerfasserIn) , Richter, Thomas (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 24 July 2020
In: Journal of scientific computing
Year: 2020, Jahrgang: 84, Heft: 2
ISSN:1573-7691
DOI:10.25673/71430
Online-Zugang:Resolving-System, kostenfrei: https://opendata.uni-halle.de//handle/1981185920/73382
Resolving-System, kostenfrei: http://dx.doi.org/10.25673/71430
Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10915-020-01285-y
Volltext
Verfasserangaben:Piotr Minakowski, Thomas Richter
Beschreibung
Zusammenfassung:We develop error estimates for the finite element approximation of elliptic partial differential equations on perturbed domains, i.e. when the computational domain does not match the real geometry. The result shows that the error related to the domain can be a dominating factor in the finite element discretization error. The main result consists of $$H^1$$H1- and $$L^2$$L2-error estimates for the Laplace problem. Theoretical considerations are validated by a computational example.
Beschreibung:Gesehen am 05.10.2020
Beschreibung:Online Resource
ISSN:1573-7691
DOI:10.25673/71430