Finite element error estimates on geometrically perturbed domains
We develop error estimates for the finite element approximation of elliptic partial differential equations on perturbed domains, i.e. when the computational domain does not match the real geometry. The result shows that the error related to the domain can be a dominating factor in the finite element...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
24 July 2020
|
| In: |
Journal of scientific computing
Year: 2020, Jahrgang: 84, Heft: 2 |
| ISSN: | 1573-7691 |
| DOI: | 10.25673/71430 |
| Online-Zugang: | Resolving-System, kostenfrei: https://opendata.uni-halle.de//handle/1981185920/73382 Resolving-System, kostenfrei: http://dx.doi.org/10.25673/71430 Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10915-020-01285-y |
| Verfasserangaben: | Piotr Minakowski, Thomas Richter |
| Zusammenfassung: | We develop error estimates for the finite element approximation of elliptic partial differential equations on perturbed domains, i.e. when the computational domain does not match the real geometry. The result shows that the error related to the domain can be a dominating factor in the finite element discretization error. The main result consists of $$H^1$$H1- and $$L^2$$L2-error estimates for the Laplace problem. Theoretical considerations are validated by a computational example. |
|---|---|
| Beschreibung: | Gesehen am 05.10.2020 |
| Beschreibung: | Online Resource |
| ISSN: | 1573-7691 |
| DOI: | 10.25673/71430 |