Finite element error estimates on geometrically perturbed domains

We develop error estimates for the finite element approximation of elliptic partial differential equations on perturbed domains, i.e. when the computational domain does not match the real geometry. The result shows that the error related to the domain can be a dominating factor in the finite element...

Full description

Saved in:
Bibliographic Details
Main Authors: Minakowski, Piotr (Author) , Richter, Thomas (Author)
Format: Article (Journal)
Language:English
Published: 24 July 2020
In: Journal of scientific computing
Year: 2020, Volume: 84, Issue: 2
ISSN:1573-7691
DOI:10.25673/71430
Online Access:Resolving-System, kostenfrei: https://opendata.uni-halle.de//handle/1981185920/73382
Resolving-System, kostenfrei: http://dx.doi.org/10.25673/71430
Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10915-020-01285-y
Get full text
Author Notes:Piotr Minakowski, Thomas Richter

MARC

LEADER 00000caa a2200000 c 4500
001 1734676493
003 DE-627
005 20221027145609.0
007 cr uuu---uuuuu
008 201005s2020 xx |||||o 00| ||eng c
024 7 |a urn:nbn:de:gbv:ma9:1-1981185920-733822  |2 urn 
024 7 |a 10.25673/71430  |2 doi 
024 7 |a 10.1007/s10915-020-01285-y  |2 doi 
035 |a (DE-627)1734676493 
035 |a (DE-599)KXP1734676493 
035 |a (OCoLC)1341368366 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Minakowski, Piotr  |d 1986-  |e VerfasserIn  |0 (DE-588)1160791708  |0 (DE-627)1024228215  |0 (DE-576)506203506  |4 aut 
245 1 0 |a Finite element error estimates on geometrically perturbed domains  |c Piotr Minakowski, Thomas Richter 
264 1 |c 24 July 2020 
300 |a 19 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 05.10.2020 
520 |a We develop error estimates for the finite element approximation of elliptic partial differential equations on perturbed domains, i.e. when the computational domain does not match the real geometry. The result shows that the error related to the domain can be a dominating factor in the finite element discretization error. The main result consists of $$H^1$$H1- and $$L^2$$L2-error estimates for the Laplace problem. Theoretical considerations are validated by a computational example. 
540 |q DE-Ma9  |a Namensnennung 4.0 International  |f CC BY 4.0  |2 cc  |u https://creativecommons.org/licenses/by/4.0/ 
700 1 |a Richter, Thomas  |e VerfasserIn  |0 (DE-588)1025367154  |0 (DE-627)722167822  |0 (DE-576)370268547  |4 aut 
773 0 8 |i Enthalten in  |t Journal of scientific computing  |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1986  |g 84(2020), 2, Artikel-ID 30  |h Online-Ressource  |w (DE-627)317878395  |w (DE-600)2017260-6  |w (DE-576)121466221  |x 1573-7691  |7 nnas  |a Finite element error estimates on geometrically perturbed domains 
773 1 8 |g volume:84  |g year:2020  |g number:2  |g elocationid:30  |g extent:19  |a Finite element error estimates on geometrically perturbed domains 
856 4 0 |u https://opendata.uni-halle.de//handle/1981185920/73382  |x Resolving-System  |z kostenfrei 
856 4 0 |u http://dx.doi.org/10.25673/71430  |x Resolving-System  |z kostenfrei 
856 4 0 |u https://doi.org/10.1007/s10915-020-01285-y  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20201005 
993 |a Article 
994 |a 2020 
998 |g 1025367154  |a Richter, Thomas  |m 1025367154:Richter, Thomas  |p 2  |y j 
998 |g 1160791708  |a Minakowski, Piotr  |m 1160791708:Minakowski, Piotr  |p 1  |x j 
999 |a KXP-PPN1734676493  |e 3767191490 
BIB |a Y 
SER |a journal 
JSO |a {"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Minakowski, Piotr","given":"Piotr","family":"Minakowski"},{"role":"aut","display":"Richter, Thomas","roleDisplay":"VerfasserIn","given":"Thomas","family":"Richter"}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"title":[{"title":"Finite element error estimates on geometrically perturbed domains","title_sort":"Finite element error estimates on geometrically perturbed domains"}],"recId":"1734676493","id":{"uri":["urn:nbn:de:gbv:ma9:1-1981185920-733822"],"doi":["10.25673/71430","10.1007/s10915-020-01285-y"],"eki":["1734676493"]},"name":{"displayForm":["Piotr Minakowski, Thomas Richter"]},"physDesc":[{"extent":"19 S."}],"relHost":[{"pubHistory":["1.1986 -"],"origin":[{"publisherPlace":"New York, NY [u.a.] ; London [u.a.]","dateIssuedDisp":"1986-","publisher":"Springer Science + Business Media B.V. ; Kluwer","dateIssuedKey":"1986"}],"id":{"issn":["1573-7691"],"eki":["317878395"],"zdb":["2017260-6"]},"recId":"317878395","language":["eng"],"disp":"Finite element error estimates on geometrically perturbed domainsJournal of scientific computing","title":[{"title":"Journal of scientific computing","title_sort":"Journal of scientific computing"}],"type":{"bibl":"periodical","media":"Online-Ressource"},"physDesc":[{"extent":"Online-Ressource"}],"part":{"issue":"2","volume":"84","text":"84(2020), 2, Artikel-ID 30","extent":"19","year":"2020"},"note":["Gesehen am 01.11.05"]}],"note":["Gesehen am 05.10.2020"],"language":["eng"],"origin":[{"dateIssuedDisp":"24 July 2020","dateIssuedKey":"2020"}]} 
SRT |a MINAKOWSKIFINITEELEM2420