Universality of fragmentation in the Schr\"odinger dynamics of bosonic Josephson junctions

The many-body Schrödinger dynamics of a one-dimensional bosonic Josephson junction is investigated for up to 10 000 bosons and long times. The initial states are fully condensed and the interaction strength is weak. We report on a universal fragmentation dynamics on the many-body level: systems con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sakmann, Kaspar (VerfasserIn) , Streltsov, Alexej Iwanowitsch (VerfasserIn) , Alon, Ofir E. (VerfasserIn) , Cederbaum, Lorenz S. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 5 February 2014
In: Physical review. A, Atomic, molecular, and optical physics
Year: 2014, Jahrgang: 89
ISSN:1094-1622
DOI:10.1103/PhysRevA.89.023602
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.89.023602
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.89.023602
Volltext
Verfasserangaben:Kaspar Sakmann, Alexej I. Streltsov, Ofir E. Alon, and Lorenz S. Cederbaum
Beschreibung
Zusammenfassung:The many-body Schrödinger dynamics of a one-dimensional bosonic Josephson junction is investigated for up to 10 000 bosons and long times. The initial states are fully condensed and the interaction strength is weak. We report on a universal fragmentation dynamics on the many-body level: systems consisting of different numbers of particles fragment to the same value at constant mean-field interaction strength. The phenomenon manifests itself in observables such as the correlation functions of the system. We explain this universal fragmentation dynamics analytically based on the Bose-Hubbard model. We thereby show that the extent to which many-body effects become important at later times depends crucially on the initial state. Even for arbitrarily large particle numbers and arbitrarily weak interaction strength the dynamics is many-body in nature and the fragmentation universal. There is no weakly interacting limit where the Gross-Pitaevskii mean field is valid for long times.
Beschreibung:Gesehen am 06.10.2020
Beschreibung:Online Resource
ISSN:1094-1622
DOI:10.1103/PhysRevA.89.023602