Machine learning in mass spectrometry: A MALDI-TOF MS approach to phenotypic antibacterial screening

Machine learning techniques can be applied to MALDI-TOF mass spectral data of drug-treated cells to obtain classification models which assign the mechanism of action of drugs. Here, we present an example application of this concept to the screening of antibacterial drugs that act at the major bacter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Oosten, Luuk N. van (VerfasserIn) , Klein, Christian D. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: March 19, 2020
In: Journal of medicinal chemistry
Year: 2020, Jahrgang: 63, Heft: 16, Pages: 8849-8856
ISSN:1520-4804
DOI:10.1021/acs.jmedchem.0c00040
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1021/acs.jmedchem.0c00040
Volltext
Verfasserangaben:Luuk N. van Oosten, Christian D. Klein
Beschreibung
Zusammenfassung:Machine learning techniques can be applied to MALDI-TOF mass spectral data of drug-treated cells to obtain classification models which assign the mechanism of action of drugs. Here, we present an example application of this concept to the screening of antibacterial drugs that act at the major bacterial target sites such as the ribosome, penicillin-binding proteins, and topoisomerases in a pharmacologically relevant phenotypic setting. We show that antibacterial effects can be identified and classified in a label-free, high-throughput manner using wild-type Escherichia coli and Staphylococcus aureus cells at variable levels of target engagement. This phenotypic approach, which combines mass spectrometry and machine learning, therefore denoted as PhenoMS-ML, may prove useful for the identification and development of novel antibacterial compounds and other pharmacological agents.
Beschreibung:Gesehen am 08.10.2020
Beschreibung:Online Resource
ISSN:1520-4804
DOI:10.1021/acs.jmedchem.0c00040