Machine learning in mass spectrometry: A MALDI-TOF MS approach to phenotypic antibacterial screening
Machine learning techniques can be applied to MALDI-TOF mass spectral data of drug-treated cells to obtain classification models which assign the mechanism of action of drugs. Here, we present an example application of this concept to the screening of antibacterial drugs that act at the major bacter...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
March 19, 2020
|
| In: |
Journal of medicinal chemistry
Year: 2020, Jahrgang: 63, Heft: 16, Pages: 8849-8856 |
| ISSN: | 1520-4804 |
| DOI: | 10.1021/acs.jmedchem.0c00040 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1021/acs.jmedchem.0c00040 |
| Verfasserangaben: | Luuk N. van Oosten, Christian D. Klein |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1735189057 | ||
| 003 | DE-627 | ||
| 005 | 20230427161356.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 201008s2020 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1021/acs.jmedchem.0c00040 |2 doi | |
| 035 | |a (DE-627)1735189057 | ||
| 035 | |a (DE-599)KXP1735189057 | ||
| 035 | |a (OCoLC)1341368541 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 32 |2 sdnb | ||
| 100 | 1 | |a Oosten, Luuk N. van |d 1991- |e VerfasserIn |0 (DE-588)1206759925 |0 (DE-627)169303607X |4 aut | |
| 245 | 1 | 0 | |a Machine learning in mass spectrometry |b A MALDI-TOF MS approach to phenotypic antibacterial screening |c Luuk N. van Oosten, Christian D. Klein |
| 264 | 1 | |c March 19, 2020 | |
| 300 | |a 8 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 08.10.2020 | ||
| 520 | |a Machine learning techniques can be applied to MALDI-TOF mass spectral data of drug-treated cells to obtain classification models which assign the mechanism of action of drugs. Here, we present an example application of this concept to the screening of antibacterial drugs that act at the major bacterial target sites such as the ribosome, penicillin-binding proteins, and topoisomerases in a pharmacologically relevant phenotypic setting. We show that antibacterial effects can be identified and classified in a label-free, high-throughput manner using wild-type Escherichia coli and Staphylococcus aureus cells at variable levels of target engagement. This phenotypic approach, which combines mass spectrometry and machine learning, therefore denoted as PhenoMS-ML, may prove useful for the identification and development of novel antibacterial compounds and other pharmacological agents. | ||
| 700 | 1 | |a Klein, Christian D. |e VerfasserIn |0 (DE-588)1060644894 |0 (DE-627)800410157 |0 (DE-576)416768717 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of medicinal chemistry |d Washington, DC : ACS, 1959 |g 63(2020), 16, Seite 8849-8856 |h Online-Ressource |w (DE-627)302468846 |w (DE-600)1491411-6 |w (DE-576)090855132 |x 1520-4804 |7 nnas |a Machine learning in mass spectrometry A MALDI-TOF MS approach to phenotypic antibacterial screening |
| 773 | 1 | 8 | |g volume:63 |g year:2020 |g number:16 |g pages:8849-8856 |g extent:8 |a Machine learning in mass spectrometry A MALDI-TOF MS approach to phenotypic antibacterial screening |
| 856 | 4 | 0 | |u https://doi.org/10.1021/acs.jmedchem.0c00040 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20201008 | ||
| 993 | |a Article | ||
| 994 | |a 2020 | ||
| 998 | |g 1060644894 |a Klein, Christian D. |m 1060644894:Klein, Christian D. |d 160000 |d 160100 |e 160000PK1060644894 |e 160100PK1060644894 |k 0/160000/ |k 1/160000/160100/ |p 2 |y j | ||
| 998 | |g 1206759925 |a Oosten, Luuk N. van |m 1206759925:Oosten, Luuk N. van |d 160000 |d 160100 |e 160000PO1206759925 |e 160100PO1206759925 |k 0/160000/ |k 1/160000/160100/ |p 1 |x j | ||
| 999 | |a KXP-PPN1735189057 |e 3772662528 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["Luuk N. van Oosten, Christian D. Klein"]},"id":{"eki":["1735189057"],"doi":["10.1021/acs.jmedchem.0c00040"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"March 19, 2020"}],"person":[{"family":"Oosten","role":"aut","given":"Luuk N. van","display":"Oosten, Luuk N. van"},{"display":"Klein, Christian D.","family":"Klein","role":"aut","given":"Christian D."}],"relHost":[{"name":{"displayForm":["American Chemical Society"]},"pubHistory":["1.1959 -"],"id":{"zdb":["1491411-6"],"issn":["1520-4804"],"eki":["302468846"]},"part":{"pages":"8849-8856","issue":"16","extent":"8","text":"63(2020), 16, Seite 8849-8856","year":"2020","volume":"63"},"recId":"302468846","physDesc":[{"extent":"Online-Ressource"}],"disp":"Machine learning in mass spectrometry A MALDI-TOF MS approach to phenotypic antibacterial screeningJournal of medicinal chemistry","origin":[{"publisher":"ACS ; ACS","dateIssuedDisp":"1959-","dateIssuedKey":"1959","publisherPlace":"Washington, DC ; Easton, Pa."}],"title":[{"title_sort":"Journal of medicinal chemistry","title":"Journal of medicinal chemistry"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"note":["Gesehen am 02.10.2020"]}],"title":[{"subtitle":"A MALDI-TOF MS approach to phenotypic antibacterial screening","title_sort":"Machine learning in mass spectrometry","title":"Machine learning in mass spectrometry"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 08.10.2020"],"recId":"1735189057","physDesc":[{"extent":"8 S."}]} | ||
| SRT | |a OOSTENLUUKMACHINELEA1920 | ||