Machine learning in mass spectrometry: A MALDI-TOF MS approach to phenotypic antibacterial screening

Machine learning techniques can be applied to MALDI-TOF mass spectral data of drug-treated cells to obtain classification models which assign the mechanism of action of drugs. Here, we present an example application of this concept to the screening of antibacterial drugs that act at the major bacter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Oosten, Luuk N. van (VerfasserIn) , Klein, Christian D. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: March 19, 2020
In: Journal of medicinal chemistry
Year: 2020, Jahrgang: 63, Heft: 16, Pages: 8849-8856
ISSN:1520-4804
DOI:10.1021/acs.jmedchem.0c00040
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1021/acs.jmedchem.0c00040
Volltext
Verfasserangaben:Luuk N. van Oosten, Christian D. Klein

MARC

LEADER 00000caa a2200000 c 4500
001 1735189057
003 DE-627
005 20230427161356.0
007 cr uuu---uuuuu
008 201008s2020 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.jmedchem.0c00040  |2 doi 
035 |a (DE-627)1735189057 
035 |a (DE-599)KXP1735189057 
035 |a (OCoLC)1341368541 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 32  |2 sdnb 
100 1 |a Oosten, Luuk N. van  |d 1991-  |e VerfasserIn  |0 (DE-588)1206759925  |0 (DE-627)169303607X  |4 aut 
245 1 0 |a Machine learning in mass spectrometry  |b A MALDI-TOF MS approach to phenotypic antibacterial screening  |c Luuk N. van Oosten, Christian D. Klein 
264 1 |c March 19, 2020 
300 |a 8 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 08.10.2020 
520 |a Machine learning techniques can be applied to MALDI-TOF mass spectral data of drug-treated cells to obtain classification models which assign the mechanism of action of drugs. Here, we present an example application of this concept to the screening of antibacterial drugs that act at the major bacterial target sites such as the ribosome, penicillin-binding proteins, and topoisomerases in a pharmacologically relevant phenotypic setting. We show that antibacterial effects can be identified and classified in a label-free, high-throughput manner using wild-type Escherichia coli and Staphylococcus aureus cells at variable levels of target engagement. This phenotypic approach, which combines mass spectrometry and machine learning, therefore denoted as PhenoMS-ML, may prove useful for the identification and development of novel antibacterial compounds and other pharmacological agents. 
700 1 |a Klein, Christian D.  |e VerfasserIn  |0 (DE-588)1060644894  |0 (DE-627)800410157  |0 (DE-576)416768717  |4 aut 
773 0 8 |i Enthalten in  |t Journal of medicinal chemistry  |d Washington, DC : ACS, 1959  |g 63(2020), 16, Seite 8849-8856  |h Online-Ressource  |w (DE-627)302468846  |w (DE-600)1491411-6  |w (DE-576)090855132  |x 1520-4804  |7 nnas  |a Machine learning in mass spectrometry A MALDI-TOF MS approach to phenotypic antibacterial screening 
773 1 8 |g volume:63  |g year:2020  |g number:16  |g pages:8849-8856  |g extent:8  |a Machine learning in mass spectrometry A MALDI-TOF MS approach to phenotypic antibacterial screening 
856 4 0 |u https://doi.org/10.1021/acs.jmedchem.0c00040  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20201008 
993 |a Article 
994 |a 2020 
998 |g 1060644894  |a Klein, Christian D.  |m 1060644894:Klein, Christian D.  |d 160000  |d 160100  |e 160000PK1060644894  |e 160100PK1060644894  |k 0/160000/  |k 1/160000/160100/  |p 2  |y j 
998 |g 1206759925  |a Oosten, Luuk N. van  |m 1206759925:Oosten, Luuk N. van  |d 160000  |d 160100  |e 160000PO1206759925  |e 160100PO1206759925  |k 0/160000/  |k 1/160000/160100/  |p 1  |x j 
999 |a KXP-PPN1735189057  |e 3772662528 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["Luuk N. van Oosten, Christian D. Klein"]},"id":{"eki":["1735189057"],"doi":["10.1021/acs.jmedchem.0c00040"]},"origin":[{"dateIssuedKey":"2020","dateIssuedDisp":"March 19, 2020"}],"person":[{"family":"Oosten","role":"aut","given":"Luuk N. van","display":"Oosten, Luuk N. van"},{"display":"Klein, Christian D.","family":"Klein","role":"aut","given":"Christian D."}],"relHost":[{"name":{"displayForm":["American Chemical Society"]},"pubHistory":["1.1959 -"],"id":{"zdb":["1491411-6"],"issn":["1520-4804"],"eki":["302468846"]},"part":{"pages":"8849-8856","issue":"16","extent":"8","text":"63(2020), 16, Seite 8849-8856","year":"2020","volume":"63"},"recId":"302468846","physDesc":[{"extent":"Online-Ressource"}],"disp":"Machine learning in mass spectrometry A MALDI-TOF MS approach to phenotypic antibacterial screeningJournal of medicinal chemistry","origin":[{"publisher":"ACS ; ACS","dateIssuedDisp":"1959-","dateIssuedKey":"1959","publisherPlace":"Washington, DC ; Easton, Pa."}],"title":[{"title_sort":"Journal of medicinal chemistry","title":"Journal of medicinal chemistry"}],"type":{"media":"Online-Ressource","bibl":"periodical"},"language":["eng"],"note":["Gesehen am 02.10.2020"]}],"title":[{"subtitle":"A MALDI-TOF MS approach to phenotypic antibacterial screening","title_sort":"Machine learning in mass spectrometry","title":"Machine learning in mass spectrometry"}],"language":["eng"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 08.10.2020"],"recId":"1735189057","physDesc":[{"extent":"8 S."}]} 
SRT |a OOSTENLUUKMACHINELEA1920