On μ-invariants of Selmer groups of some CM elliptic curves
We show that the Selmer groups defined over the cyclotomic ℤ3-extension of the field of 3-torsion points of the CM elliptic curves 256a1, 256a2, 256d1, 256d2, 121b1, 121b2 have μ-invariant equal to zero, verifying a conjecture in non-commutative Iwasawa theory.
Saved in:
| Main Author: | |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
14 May 2013
|
| In: |
International journal of number theory
Year: 2013, Volume: 9, Issue: 5, Pages: 1199-1214 |
| ISSN: | 1793-0421 |
| DOI: | 10.1142/S1793042113500206 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1142/S1793042113500206 Verlag, lizenzpflichtig, Volltext: https://www.worldscientific.com/doi/abs/10.1142/S1793042113500206 |
| Author Notes: | Chandrakant S. Aribam |
| Summary: | We show that the Selmer groups defined over the cyclotomic ℤ3-extension of the field of 3-torsion points of the CM elliptic curves 256a1, 256a2, 256d1, 256d2, 121b1, 121b2 have μ-invariant equal to zero, verifying a conjecture in non-commutative Iwasawa theory. |
|---|---|
| Item Description: | Gesehen am 20.10.2020 |
| Physical Description: | Online Resource |
| ISSN: | 1793-0421 |
| DOI: | 10.1142/S1793042113500206 |