On μ-invariants of Selmer groups of some CM elliptic curves

We show that the Selmer groups defined over the cyclotomic ℤ3-extension of the field of 3-torsion points of the CM elliptic curves 256a1, 256a2, 256d1, 256d2, 121b1, 121b2 have μ-invariant equal to zero, verifying a conjecture in non-commutative Iwasawa theory.

Saved in:
Bibliographic Details
Main Author: Aribam, Chandrakant (Author)
Format: Article (Journal)
Language:English
Published: 14 May 2013
In: International journal of number theory
Year: 2013, Volume: 9, Issue: 5, Pages: 1199-1214
ISSN:1793-0421
DOI:10.1142/S1793042113500206
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1142/S1793042113500206
Verlag, lizenzpflichtig, Volltext: https://www.worldscientific.com/doi/abs/10.1142/S1793042113500206
Get full text
Author Notes:Chandrakant S. Aribam
Description
Summary:We show that the Selmer groups defined over the cyclotomic ℤ3-extension of the field of 3-torsion points of the CM elliptic curves 256a1, 256a2, 256d1, 256d2, 121b1, 121b2 have μ-invariant equal to zero, verifying a conjecture in non-commutative Iwasawa theory.
Item Description:Gesehen am 20.10.2020
Physical Description:Online Resource
ISSN:1793-0421
DOI:10.1142/S1793042113500206