Spatially Regularized Geometric Assignment for Unsupervised Label Learning on Manifolds

We introduce a smooth coupled system of Riemannian flows for simultaneously learning a dictionary of manifold‐valued prototypes and assigning these prototypes to the image data in a spatially coherent way.

Saved in:
Bibliographic Details
Main Authors: Zern, Artjom (Author) , Zisler, Matthias (Author) , Petra, Stefania (Author) , Schnörr, Christoph (Author)
Format: Article (Journal)
Language:English
Published: 18 November 2019
In: Proceedings in applied mathematics and mechanics
Year: 2019, Volume: 19, Issue: 1
ISSN:1617-7061
DOI:10.1002/pamm.201900258
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/pamm.201900258
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/10.1002/pamm.201900258
Get full text
Author Notes:Artjom Zern, Matthias Zisler, Stefania Petra, and Christoph Schnörr
Description
Summary:We introduce a smooth coupled system of Riemannian flows for simultaneously learning a dictionary of manifold‐valued prototypes and assigning these prototypes to the image data in a spatially coherent way.
Item Description:Gesehen am 20.01.2021
Physical Description:Online Resource
ISSN:1617-7061
DOI:10.1002/pamm.201900258