A Bayesian non-parametric Potts model with application to pre-surgical FMRI data

The Potts model has enjoyed much success as a prior model for image segmentation. Given the individual classes in the model, the data are typically modeled as Gaussian random variates or as random variates from some other parametric distribution. In this article, we present a non-parametric Potts mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Johnson, Timothy D. (VerfasserIn) , Liu, Zhuqing (VerfasserIn) , Bartsch, Andreas J. (VerfasserIn) , Nichols, Thomas E. (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2013
In: Statistical methods in medical research
Year: 2013, Jahrgang: 22, Heft: 4, Pages: 364-381
ISSN:1477-0334
DOI:10.1177/0962280212448970
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1177/0962280212448970
Volltext
Verfasserangaben:Timothy D Johnson, Zhuqing Liu, Andreas J Bartsch and Thomas E Nichols

MARC

LEADER 00000caa a2200000 c 4500
001 1753354234
003 DE-627
005 20241009124437.0
007 cr uuu---uuuuu
008 210408s2013 xx |||||o 00| ||eng c
024 7 |a 10.1177/0962280212448970  |2 doi 
035 |a (DE-627)1753354234 
035 |a (DE-599)KXP1753354234 
035 |a (OCoLC)1341403850 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Johnson, Timothy D.  |e VerfasserIn  |0 (DE-588)1231012692  |0 (DE-627)1753353092  |4 aut 
245 1 2 |a A Bayesian non-parametric Potts model with application to pre-surgical FMRI data  |c Timothy D Johnson, Zhuqing Liu, Andreas J Bartsch and Thomas E Nichols 
264 1 |c 2013 
300 |a 18 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 08.04.2021 
500 |a First published: May 23, 2012 
520 |a The Potts model has enjoyed much success as a prior model for image segmentation. Given the individual classes in the model, the data are typically modeled as Gaussian random variates or as random variates from some other parametric distribution. In this article, we present a non-parametric Potts model and apply it to a functional magnetic resonance imaging study for the pre-surgical assessment of peritumoral brain activation. In our model, we assume that the Z-score image from a patient can be segmented into activated, deactivated, and null classes, or states. Conditional on the class, or state, the Z-scores are assumed to come from some generic distribution which we model non-parametrically using a mixture of Dirichlet process priors within the Bayesian framework. The posterior distribution of the model parameters is estimated with a Markov chain Monte Carlo algorithm, and Bayesian decision theory is used to make the final classifications. Our Potts prior model includes two parameters, the standard spatial regularization parameter and a parameter that can be interpreted as the a priori probability that each voxel belongs to the null, or background state, conditional on the lack of spatial regularization. We assume that both of these parameters are unknown, and jointly estimate them along with other model parameters. We show through simulation studies that our model performs on par, in terms of posterior expected loss, with parametric Potts models when the parametric model is correctly specified and outperforms parametric models when the parametric model in misspecified. 
650 4 |a decision theory 
650 4 |a Dirichlet process 
650 4 |a FMRI 
650 4 |a hidden Markov random field 
650 4 |a non-parametric Bayes 
650 4 |a Potts model 
700 1 |a Liu, Zhuqing  |e VerfasserIn  |4 aut 
700 1 |a Bartsch, Andreas J.  |d 1968-  |e VerfasserIn  |0 (DE-588)122450191  |0 (DE-627)08195073X  |0 (DE-576)250275260  |4 aut 
700 1 |a Nichols, Thomas E.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Statistical methods in medical research  |d London [u.a.] : Sage, 1992  |g 22(2013), 4, Seite 364-381  |h Online-Ressource  |w (DE-627)320412873  |w (DE-600)2001539-2  |w (DE-576)09088065X  |x 1477-0334  |7 nnas  |a A Bayesian non-parametric Potts model with application to pre-surgical FMRI data 
773 1 8 |g volume:22  |g year:2013  |g number:4  |g pages:364-381  |g extent:18  |a A Bayesian non-parametric Potts model with application to pre-surgical FMRI data 
856 4 0 |u https://doi.org/10.1177/0962280212448970  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210408 
993 |a Article 
994 |a 2013 
998 |g 122450191  |a Bartsch, Andreas J.  |m 122450191:Bartsch, Andreas J.  |d 50000  |e 50000PB122450191  |k 0/50000/  |p 3 
999 |a KXP-PPN1753354234  |e 3903419281 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"recId":"1753354234","note":["Gesehen am 08.04.2021","First published: May 23, 2012"],"type":{"media":"Online-Ressource","bibl":"article-journal"},"title":[{"title":"A Bayesian non-parametric Potts model with application to pre-surgical FMRI data","title_sort":"Bayesian non-parametric Potts model with application to pre-surgical FMRI data"}],"person":[{"family":"Johnson","given":"Timothy D.","roleDisplay":"VerfasserIn","display":"Johnson, Timothy D.","role":"aut"},{"role":"aut","display":"Liu, Zhuqing","roleDisplay":"VerfasserIn","given":"Zhuqing","family":"Liu"},{"given":"Andreas J.","family":"Bartsch","role":"aut","display":"Bartsch, Andreas J.","roleDisplay":"VerfasserIn"},{"given":"Thomas E.","family":"Nichols","role":"aut","display":"Nichols, Thomas E.","roleDisplay":"VerfasserIn"}],"relHost":[{"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"A Bayesian non-parametric Potts model with application to pre-surgical FMRI dataStatistical methods in medical research","physDesc":[{"extent":"Online-Ressource"}],"recId":"320412873","language":["eng"],"pubHistory":["1.1992 -"],"part":{"pages":"364-381","issue":"4","year":"2013","extent":"18","volume":"22","text":"22(2013), 4, Seite 364-381"},"title":[{"subtitle":"an international review journal","title":"Statistical methods in medical research","title_sort":"Statistical methods in medical research"}],"origin":[{"publisherPlace":"London [u.a.] ; London","publisher":"Sage ; Arnold","dateIssuedKey":"1992","dateIssuedDisp":"1992-"}],"id":{"eki":["320412873"],"zdb":["2001539-2"],"issn":["1477-0334"]}}],"physDesc":[{"extent":"18 S."}],"id":{"doi":["10.1177/0962280212448970"],"eki":["1753354234"]},"origin":[{"dateIssuedKey":"2013","dateIssuedDisp":"2013"}],"name":{"displayForm":["Timothy D Johnson, Zhuqing Liu, Andreas J Bartsch and Thomas E Nichols"]}} 
SRT |a JOHNSONTIMBAYESIANNO2013