The construction of Green currents and singular theta lifts for unitary groups

With applications in the Kudla program in mind we employ singular theta lifts for the reductive dual pair to construct two different kinds of Green forms for codimension -cycles in Shimura varieties associated to unitary groups. We establish an adjointness result between our singular theta lift and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Funke, Jens (VerfasserIn) , Hofmann, Eric (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: January 27, 2021
In: Transactions of the American Mathematical Society
Year: 2021, Jahrgang: 374, Heft: 4, Pages: 2909-2947
ISSN:1088-6850
DOI:10.1090/tran/8289
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1090/tran/8289
Verlag, lizenzpflichtig, Volltext: https://www.ams.org/tran/2021-374-04/S0002-9947-2021-08289-6/
Volltext
Verfasserangaben:Jens Funke and Eric Hofmann
Beschreibung
Zusammenfassung:With applications in the Kudla program in mind we employ singular theta lifts for the reductive dual pair to construct two different kinds of Green forms for codimension -cycles in Shimura varieties associated to unitary groups. We establish an adjointness result between our singular theta lift and the Kudla-Millson lift. Further, we compare the two Greens forms and obtain modularity for the generating function of the difference of the two Green forms. Finally, we show that the Green forms obtained by the singular theta lift satisfy an eigenvalue equation for the Laplace operator and conclude that our Green forms coincide with the ones constructed by Oda and Tsuzuki by different means.
Beschreibung:Gesehen am 14.04.2021
Beschreibung:Online Resource
ISSN:1088-6850
DOI:10.1090/tran/8289