The quantization of gravity: quantization of the Hamilton equations

We quantize the Hamilton equations instead of the Hamilton condition. The resulting equation has the simple form −Δu=0 in a fiber bundle, where the Laplacian is the Laplacian of the Wheeler-DeWitt metric provided n≠4. Using then separation of variables, the solutions u can be expressed as products...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gerhardt, Claus (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 7 April 2021
In: Universe
Year: 2021, Jahrgang: 7, Heft: 4
ISSN:2218-1997
DOI:10.3390/universe7040091
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3390/universe7040091
Verlag, lizenzpflichtig, Volltext: https://www.mdpi.com/2218-1997/7/4/91
Volltext
Verfasserangaben:Claus Gerhardt
Beschreibung
Zusammenfassung:We quantize the Hamilton equations instead of the Hamilton condition. The resulting equation has the simple form −Δu=0 in a fiber bundle, where the Laplacian is the Laplacian of the Wheeler-DeWitt metric provided n≠4. Using then separation of variables, the solutions u can be expressed as products of temporal and spatial eigenfunctions, where the spatial eigenfunctions are eigenfunctions of the Laplacian in the symmetric space SL(n,R)/SO(n). Since one can define a Schwartz space and tempered distributions in SL(n,R)/SO(n) as well as a Fourier transform, Fourier quantization can be applied such that the spatial eigenfunctions are transformed to Dirac measures and the spatial Laplacian to a multiplication operator.
Beschreibung:Gesehen am 08.02.2021
Beschreibung:Online Resource
ISSN:2218-1997
DOI:10.3390/universe7040091