Referral for disease-related visual impairment using retinal photograph-based deep learning: a proof-of-concept, model development study

Background - In current approaches to vision screening in the community, a simple and efficient process is needed to identify individuals who should be referred to tertiary eye care centres for vision loss related to eye diseases. The emergence of deep learning technology offers new opportunities to...

Full description

Saved in:
Bibliographic Details
Main Authors: Tham, Yih-Chung (Author) , Anees, Ayesha (Author) , Zhang, Liang (Author) , Goh, Jocelyn Hui Lin (Author) , Rim, Tyler Hyungtaek (Author) , Nusinovici, Simon (Author) , Hamzah, Haslina (Author) , Chee, Miao-Li (Author) , Tjio, Gabriel (Author) , Li, Shaohua (Author) , Xu, Xinxing (Author) , Goh, Rick (Author) , Tang, Fangyao (Author) , Cheung, Carol Yim-Lui (Author) , Wang, Ya Xing (Author) , Nangia, Vinay (Author) , Jonas, Jost B. (Author) , Gopinath, Bamini (Author) , Mitchell, Paul (Author) , Husain, Rahat (Author) , Lamoureux, Ecosse (Author) , Sabanayagam, Charumathi (Author) , Wang, Jie Jin (Author) , Aung, Tin (Author) , Liu, Yong (Author) , Wong, Tien Yin (Author) , Cheng, Ching-Yu (Author)
Format: Article (Journal)
Language:English
Published: January 2021
In: The lancet. Digital health
Year: 2021, Volume: 3, Issue: 1, Pages: e29-e40
ISSN:2589-7500
DOI:10.1016/S2589-7500(20)30271-5
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/S2589-7500(20)30271-5
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S2589750020302715
Get full text
Author Notes:Yih-Chung Tham, Ayesha Anees, Liang Zhang, Jocelyn Hui Lin Goh, Tyler Hyungtaek Rim, Simon Nusinovici, Haslina Hamzah, Miao-Li Chee, Gabriel Tjio, Shaohua Li, Xinxing Xu, Rick Goh, Fangyao Tang, Carol Yim-Lui Cheung, Ya Xing Wang, Vinay Nangia, Jost B Jonas, Bamini Gopinath, Paul Mitchell, Rahat Husain, Ecosse Lamoureux, Charumathi Sabanayagam, Jie Jin Wang, Tin Aung, Yong Liu, Tien Yin Wong, Ching-Yu Cheng

MARC

LEADER 00000caa a2200000 c 4500
001 1755990413
003 DE-627
005 20230428043118.0
007 cr uuu---uuuuu
008 210427s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/S2589-7500(20)30271-5  |2 doi 
035 |a (DE-627)1755990413 
035 |a (DE-599)KXP1755990413 
035 |a (OCoLC)1341406193 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Tham, Yih-Chung  |e VerfasserIn  |0 (DE-588)1232245836  |0 (DE-627)1755989210  |4 aut 
245 1 0 |a Referral for disease-related visual impairment using retinal photograph-based deep learning  |b a proof-of-concept, model development study  |c Yih-Chung Tham, Ayesha Anees, Liang Zhang, Jocelyn Hui Lin Goh, Tyler Hyungtaek Rim, Simon Nusinovici, Haslina Hamzah, Miao-Li Chee, Gabriel Tjio, Shaohua Li, Xinxing Xu, Rick Goh, Fangyao Tang, Carol Yim-Lui Cheung, Ya Xing Wang, Vinay Nangia, Jost B Jonas, Bamini Gopinath, Paul Mitchell, Rahat Husain, Ecosse Lamoureux, Charumathi Sabanayagam, Jie Jin Wang, Tin Aung, Yong Liu, Tien Yin Wong, Ching-Yu Cheng 
264 1 |c January 2021 
300 |a 12 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.04.2021 
520 |a Background - In current approaches to vision screening in the community, a simple and efficient process is needed to identify individuals who should be referred to tertiary eye care centres for vision loss related to eye diseases. The emergence of deep learning technology offers new opportunities to revolutionise this clinical referral pathway. We aimed to assess the performance of a newly developed deep learning algorithm for detection of disease-related visual impairment. - Methods - In this proof-of-concept study, using retinal fundus images from 15 175 eyes with complete data related to best-corrected visual acuity or pinhole visual acuity from the Singapore Epidemiology of Eye Diseases Study, we first developed a single-modality deep learning algorithm based on retinal photographs alone for detection of any disease-related visual impairment (defined as eyes from patients with major eye diseases and best-corrected visual acuity of <20/40), and moderate or worse disease-related visual impairment (eyes with disease and best-corrected visual acuity of <20/60). After development of the algorithm, we tested it internally, using a new set of 3803 eyes from the Singapore Epidemiology of Eye Diseases Study. We then tested it externally using three population-based studies (the Beijing Eye study [6239 eyes], Central India Eye and Medical study [6526 eyes], and Blue Mountains Eye Study [2002 eyes]), and two clinical studies (the Chinese University of Hong Kong's Sight Threatening Diabetic Retinopathy study [971 eyes] and the Outram Polyclinic Study [1225 eyes]). The algorithm's performance in each dataset was assessed on the basis of the area under the receiver operating characteristic curve (AUC). - Findings - In the internal test dataset, the AUC for detection of any disease-related visual impairment was 94·2% (95% CI 93·0-95·3; sensitivity 90·7% [87·0-93·6]; specificity 86·8% [85·6-87·9]). The AUC for moderate or worse disease-related visual impairment was 93·9% (95% CI 92·2-95·6; sensitivity 94·6% [89·6-97·6]; specificity 81·3% [80·0-82·5]). Across the five external test datasets (16 993 eyes), the algorithm achieved AUCs ranging between 86·6% (83·4-89·7; sensitivity 87·5% [80·7-92·5]; specificity 70·0% [66·7-73·1]) and 93·6% (92·4-94·8; sensitivity 87·8% [84·1-90·9]; specificity 87·1% [86·2-88·0]) for any disease-related visual impairment, and the AUCs for moderate or worse disease-related visual impairment ranged between 85·9% (81·8-90·1; sensitivity 84·7% [73·0-92·8]; specificity 74·4% [71·4-77·2]) and 93·5% (91·7-95·3; sensitivity 90·3% [84·2-94·6]; specificity 84·2% [83·2-85·1]). - Interpretation - This proof-of-concept study shows the potential of a single-modality, function-focused tool in identifying visual impairment related to major eye diseases, providing more timely and pinpointed referral of patients with disease-related visual impairment from the community to tertiary eye hospitals. - Funding - National Medical Research Council, Singapore. 
700 1 |a Anees, Ayesha  |e VerfasserIn  |4 aut 
700 1 |a Zhang, Liang  |e VerfasserIn  |4 aut 
700 1 |a Goh, Jocelyn Hui Lin  |e VerfasserIn  |4 aut 
700 1 |a Rim, Tyler Hyungtaek  |e VerfasserIn  |4 aut 
700 1 |a Nusinovici, Simon  |e VerfasserIn  |4 aut 
700 1 |a Hamzah, Haslina  |e VerfasserIn  |4 aut 
700 1 |a Chee, Miao-Li  |e VerfasserIn  |4 aut 
700 1 |a Tjio, Gabriel  |e VerfasserIn  |4 aut 
700 1 |a Li, Shaohua  |e VerfasserIn  |4 aut 
700 1 |a Xu, Xinxing  |e VerfasserIn  |4 aut 
700 1 |a Goh, Rick  |e VerfasserIn  |4 aut 
700 1 |a Tang, Fangyao  |e VerfasserIn  |4 aut 
700 1 |a Cheung, Carol Yim-Lui  |e VerfasserIn  |4 aut 
700 1 |a Wang, Ya Xing  |e VerfasserIn  |4 aut 
700 1 |a Nangia, Vinay  |e VerfasserIn  |4 aut 
700 1 |a Jonas, Jost B.  |d 1958-  |e VerfasserIn  |0 (DE-588)1028286732  |0 (DE-627)730536823  |0 (DE-576)37578537X  |4 aut 
700 1 |a Gopinath, Bamini  |e VerfasserIn  |4 aut 
700 1 |a Mitchell, Paul  |e VerfasserIn  |4 aut 
700 1 |a Husain, Rahat  |e VerfasserIn  |4 aut 
700 1 |a Lamoureux, Ecosse  |e VerfasserIn  |4 aut 
700 1 |a Sabanayagam, Charumathi  |e VerfasserIn  |4 aut 
700 1 |a Wang, Jie Jin  |e VerfasserIn  |4 aut 
700 1 |a Aung, Tin  |e VerfasserIn  |4 aut 
700 1 |a Liu, Yong  |e VerfasserIn  |4 aut 
700 1 |a Wong, Tien Yin  |e VerfasserIn  |4 aut 
700 1 |a Cheng, Ching-Yu  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t The lancet. Digital health  |d London : The Lancet, 2019  |g 3(2021), 1, Seite e29-e40  |h Online-Ressource  |w (DE-627)1665782404  |w (DE-600)2972368-1  |x 2589-7500  |7 nnas  |a Referral for disease-related visual impairment using retinal photograph-based deep learning a proof-of-concept, model development study 
773 1 8 |g volume:3  |g year:2021  |g number:1  |g pages:e29-e40  |g extent:12  |a Referral for disease-related visual impairment using retinal photograph-based deep learning a proof-of-concept, model development study 
856 4 0 |u https://doi.org/10.1016/S2589-7500(20)30271-5  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S2589750020302715  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210427 
993 |a Article 
994 |a 2021 
998 |g 1028286732  |a Jonas, Jost B.  |m 1028286732:Jonas, Jost B.  |d 60000  |e 60000PJ1028286732  |k 0/60000/  |p 17 
999 |a KXP-PPN1755990413  |e 3918072681 
BIB |a Y 
SER |a journal 
JSO |a {"title":[{"title_sort":"Referral for disease-related visual impairment using retinal photograph-based deep learning","title":"Referral for disease-related visual impairment using retinal photograph-based deep learning","subtitle":"a proof-of-concept, model development study"}],"language":["eng"],"person":[{"family":"Tham","display":"Tham, Yih-Chung","given":"Yih-Chung","role":"aut"},{"display":"Anees, Ayesha","given":"Ayesha","role":"aut","family":"Anees"},{"family":"Zhang","display":"Zhang, Liang","given":"Liang","role":"aut"},{"given":"Jocelyn Hui Lin","role":"aut","display":"Goh, Jocelyn Hui Lin","family":"Goh"},{"given":"Tyler Hyungtaek","role":"aut","display":"Rim, Tyler Hyungtaek","family":"Rim"},{"family":"Nusinovici","role":"aut","given":"Simon","display":"Nusinovici, Simon"},{"given":"Haslina","role":"aut","display":"Hamzah, Haslina","family":"Hamzah"},{"display":"Chee, Miao-Li","given":"Miao-Li","role":"aut","family":"Chee"},{"display":"Tjio, Gabriel","role":"aut","given":"Gabriel","family":"Tjio"},{"display":"Li, Shaohua","given":"Shaohua","role":"aut","family":"Li"},{"role":"aut","given":"Xinxing","display":"Xu, Xinxing","family":"Xu"},{"family":"Goh","given":"Rick","role":"aut","display":"Goh, Rick"},{"role":"aut","given":"Fangyao","display":"Tang, Fangyao","family":"Tang"},{"family":"Cheung","given":"Carol Yim-Lui","role":"aut","display":"Cheung, Carol Yim-Lui"},{"given":"Ya Xing","role":"aut","display":"Wang, Ya Xing","family":"Wang"},{"given":"Vinay","role":"aut","display":"Nangia, Vinay","family":"Nangia"},{"given":"Jost B.","role":"aut","display":"Jonas, Jost B.","family":"Jonas"},{"family":"Gopinath","given":"Bamini","role":"aut","display":"Gopinath, Bamini"},{"family":"Mitchell","given":"Paul","role":"aut","display":"Mitchell, Paul"},{"display":"Husain, Rahat","given":"Rahat","role":"aut","family":"Husain"},{"display":"Lamoureux, Ecosse","role":"aut","given":"Ecosse","family":"Lamoureux"},{"role":"aut","given":"Charumathi","display":"Sabanayagam, Charumathi","family":"Sabanayagam"},{"family":"Wang","given":"Jie Jin","role":"aut","display":"Wang, Jie Jin"},{"display":"Aung, Tin","role":"aut","given":"Tin","family":"Aung"},{"display":"Liu, Yong","given":"Yong","role":"aut","family":"Liu"},{"family":"Wong","display":"Wong, Tien Yin","given":"Tien Yin","role":"aut"},{"family":"Cheng","role":"aut","given":"Ching-Yu","display":"Cheng, Ching-Yu"}],"name":{"displayForm":["Yih-Chung Tham, Ayesha Anees, Liang Zhang, Jocelyn Hui Lin Goh, Tyler Hyungtaek Rim, Simon Nusinovici, Haslina Hamzah, Miao-Li Chee, Gabriel Tjio, Shaohua Li, Xinxing Xu, Rick Goh, Fangyao Tang, Carol Yim-Lui Cheung, Ya Xing Wang, Vinay Nangia, Jost B Jonas, Bamini Gopinath, Paul Mitchell, Rahat Husain, Ecosse Lamoureux, Charumathi Sabanayagam, Jie Jin Wang, Tin Aung, Yong Liu, Tien Yin Wong, Ching-Yu Cheng"]},"id":{"eki":["1755990413"],"doi":["10.1016/S2589-7500(20)30271-5"]},"physDesc":[{"extent":"12 S."}],"relHost":[{"title":[{"title_sort":"lancet","title":"The lancet","partname":"Digital health"}],"part":{"pages":"e29-e40","extent":"12","issue":"1","text":"3(2021), 1, Seite e29-e40","year":"2021","volume":"3"},"language":["eng"],"origin":[{"publisher":"The Lancet","dateIssuedDisp":"[2019]-","publisherPlace":"London"}],"recId":"1665782404","type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Referral for disease-related visual impairment using retinal photograph-based deep learning a proof-of-concept, model development studyThe lancet. Digital health","id":{"zdb":["2972368-1"],"issn":["2589-7500"],"eki":["1665782404"]},"physDesc":[{"extent":"Online-Ressource"}],"pubHistory":["Volume 1, issue 1 (May 2019)-"]}],"note":["Gesehen am 27.04.2021"],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"January 2021"}],"recId":"1755990413","type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a THAMYIHCHUREFERRALFO2021