Improved detection of air trapping on expiratory computed tomography using deep learning

Background Radiologic evidence of air trapping (AT) on expiratory computed tomography (CT) scans is associated with early pulmonary dysfunction in patients with cystic fibrosis (CF). However, standard techniques for quantitative assessment of AT are highly variable, resulting in limited efficacy for...

Full description

Saved in:
Bibliographic Details
Main Authors: Ram, Sundaresh (Author) , Hoff, Benjamin A. (Author) , Bell, Alexander J. (Author) , Galban, Stefanie (Author) , Fortuna, Aleksa B. (Author) , Weinheimer, Oliver (Author) , Wielpütz, Mark Oliver (Author) , Robinson, Terry E. (Author) , Newman, Beverley (Author) , Vummidi, Dharshan (Author) , Chughtai, Aamer (Author) , Kazerooni, Ella A. (Author) , Johnson, Timothy D. (Author) , Han, MeiLan K. (Author) , Hatt, Charles R. (Author) , Galban, Craig J. (Author)
Format: Article (Journal)
Language:English
Published: March 24, 2021
In: PLOS ONE
Year: 2021, Volume: 16, Issue: 3, Pages: 1-17
ISSN:1932-6203
DOI:10.1371/journal.pone.0248902
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1371/journal.pone.0248902
Verlag, lizenzpflichtig, Volltext: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248902
Get full text
Author Notes:Sundaresh Ram, Benjamin A. Hoff, Alexander J. Bell, Stefanie Galban, Aleksa B. Fortuna, Oliver Weinheimer, Mark O. Wielpütz, Terry E. Robinson, Beverley Newman, Dharshan Vummidi, Aamer Chughtai, Ella A. Kazerooni, Timothy D. Johnson, MeiLan K. Han, Charles R. Hatt, Craig J. Galban

MARC

LEADER 00000caa a2200000 c 4500
001 1757500782
003 DE-627
005 20230426112706.0
007 cr uuu---uuuuu
008 210507s2021 xx |||||o 00| ||eng c
024 7 |a 10.1371/journal.pone.0248902  |2 doi 
035 |a (DE-627)1757500782 
035 |a (DE-599)KXP1757500782 
035 |a (OCoLC)1341408631 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Ram, Sundaresh  |e VerfasserIn  |0 (DE-588)1233380397  |0 (DE-627)1757719415  |4 aut 
245 1 0 |a Improved detection of air trapping on expiratory computed tomography using deep learning  |c Sundaresh Ram, Benjamin A. Hoff, Alexander J. Bell, Stefanie Galban, Aleksa B. Fortuna, Oliver Weinheimer, Mark O. Wielpütz, Terry E. Robinson, Beverley Newman, Dharshan Vummidi, Aamer Chughtai, Ella A. Kazerooni, Timothy D. Johnson, MeiLan K. Han, Charles R. Hatt, Craig J. Galban 
264 1 |c March 24, 2021 
300 |a 17 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 12.05.2021 
520 |a Background Radiologic evidence of air trapping (AT) on expiratory computed tomography (CT) scans is associated with early pulmonary dysfunction in patients with cystic fibrosis (CF). However, standard techniques for quantitative assessment of AT are highly variable, resulting in limited efficacy for monitoring disease progression. Objective To investigate the effectiveness of a convolutional neural network (CNN) model for quantifying and monitoring AT, and to compare it with other quantitative AT measures obtained from threshold-based techniques. Materials and methods Paired volumetric whole lung inspiratory and expiratory CT scans were obtained at four time points (0, 3, 12 and 24 months) on 36 subjects with mild CF lung disease. A densely connected CNN (DN) was trained using AT segmentation maps generated from a personalized threshold-based method (PTM). Quantitative AT (QAT) values, presented as the relative volume of AT over the lungs, from the DN approach were compared to QAT values from the PTM method. Radiographic assessment, spirometric measures, and clinical scores were correlated to the DN QAT values using a linear mixed effects model. Results QAT values from the DN were found to increase from 8.65% ± 1.38% to 21.38% ± 1.82%, respectively, over a two-year period. Comparison of CNN model results to intensity-based measures demonstrated a systematic drop in the Dice coefficient over time (decreased from 0.86 ± 0.03 to 0.45 ± 0.04). The trends observed in DN QAT values were consistent with clinical scores for AT, bronchiectasis, and mucus plugging. In addition, the DN approach was found to be less susceptible to variations in expiratory deflation levels than the threshold-based approach. Conclusion The CNN model effectively delineated AT on expiratory CT scans, which provides an automated and objective approach for assessing and monitoring AT in CF patients. 
650 4 |a Computed axial tomography 
650 4 |a Cystic fibrosis 
650 4 |a Deep learning 
650 4 |a Imaging techniques 
650 4 |a Mucus 
650 4 |a Pulmonary function 
650 4 |a Pulmonary imaging 
650 4 |a Radiologists 
700 1 |a Hoff, Benjamin A.  |e VerfasserIn  |4 aut 
700 1 |a Bell, Alexander J.  |e VerfasserIn  |4 aut 
700 1 |a Galban, Stefanie  |e VerfasserIn  |4 aut 
700 1 |a Fortuna, Aleksa B.  |e VerfasserIn  |4 aut 
700 1 |a Weinheimer, Oliver  |d 1973-  |e VerfasserIn  |0 (DE-588)133803473  |0 (DE-627)556388585  |0 (DE-576)30011558X  |4 aut 
700 1 |a Wielpütz, Mark Oliver  |d 1982-  |e VerfasserIn  |0 (DE-588)139999752  |0 (DE-627)614754682  |0 (DE-576)314127046  |4 aut 
700 1 |a Robinson, Terry E.  |e VerfasserIn  |4 aut 
700 1 |a Newman, Beverley  |e VerfasserIn  |4 aut 
700 1 |a Vummidi, Dharshan  |e VerfasserIn  |4 aut 
700 1 |a Chughtai, Aamer  |e VerfasserIn  |4 aut 
700 1 |a Kazerooni, Ella A.  |e VerfasserIn  |4 aut 
700 1 |a Johnson, Timothy D.  |e VerfasserIn  |4 aut 
700 1 |a Han, MeiLan K.  |e VerfasserIn  |4 aut 
700 1 |a Hatt, Charles R.  |e VerfasserIn  |4 aut 
700 1 |a Galban, Craig J.  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t PLOS ONE  |d San Francisco, California, US : PLOS, 2006  |g 16(2021), 3, Artikel-ID e0248902, Seite 1-17  |h Online-Ressource  |w (DE-627)523574592  |w (DE-600)2267670-3  |w (DE-576)281331979  |x 1932-6203  |7 nnas  |a Improved detection of air trapping on expiratory computed tomography using deep learning 
773 1 8 |g volume:16  |g year:2021  |g number:3  |g elocationid:e0248902  |g pages:1-17  |g extent:17  |a Improved detection of air trapping on expiratory computed tomography using deep learning 
856 4 0 |u https://doi.org/10.1371/journal.pone.0248902  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248902  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210507 
993 |a Article 
994 |a 2021 
998 |g 139999752  |a Wielpütz, Mark Oliver  |m 139999752:Wielpütz, Mark Oliver  |d 910000  |d 911400  |d 50000  |e 910000PW139999752  |e 911400PW139999752  |e 50000PW139999752  |k 0/910000/  |k 1/910000/911400/  |k 0/50000/  |p 7 
998 |g 133803473  |a Weinheimer, Oliver  |m 133803473:Weinheimer, Oliver  |d 910000  |d 911400  |e 910000PW133803473  |e 911400PW133803473  |k 0/910000/  |k 1/910000/911400/  |p 6 
999 |a KXP-PPN1757500782  |e 3925055126 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"17 S."}],"relHost":[{"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Improved detection of air trapping on expiratory computed tomography using deep learningPLOS ONE","language":["eng"],"title":[{"title":"PLOS ONE","title_sort":"PLOS ONE"}],"corporate":[{"role":"isb","display":"Public Library of Science"}],"part":{"extent":"17","volume":"16","year":"2021","issue":"3","pages":"1-17","text":"16(2021), 3, Artikel-ID e0248902, Seite 1-17"},"id":{"zdb":["2267670-3"],"issn":["1932-6203"],"eki":["523574592"]},"pubHistory":["1.2006 -"],"name":{"displayForm":["Public Library of Science"]},"recId":"523574592","physDesc":[{"extent":"Online-Ressource"}],"note":["Schreibweise des Titels bis 2012: PLoS ONE","Gesehen am 20.03.19"],"origin":[{"publisher":"PLOS ; PLoS","dateIssuedDisp":"2006-","publisherPlace":"San Francisco, California, US ; Lawrence, Kan.","dateIssuedKey":"2006"}]}],"person":[{"given":"Sundaresh","family":"Ram","display":"Ram, Sundaresh","role":"aut"},{"display":"Hoff, Benjamin A.","role":"aut","family":"Hoff","given":"Benjamin A."},{"role":"aut","display":"Bell, Alexander J.","given":"Alexander J.","family":"Bell"},{"given":"Stefanie","family":"Galban","role":"aut","display":"Galban, Stefanie"},{"family":"Fortuna","given":"Aleksa B.","display":"Fortuna, Aleksa B.","role":"aut"},{"role":"aut","display":"Weinheimer, Oliver","family":"Weinheimer","given":"Oliver"},{"family":"Wielpütz","given":"Mark Oliver","role":"aut","display":"Wielpütz, Mark Oliver"},{"role":"aut","display":"Robinson, Terry E.","family":"Robinson","given":"Terry E."},{"role":"aut","display":"Newman, Beverley","family":"Newman","given":"Beverley"},{"given":"Dharshan","family":"Vummidi","display":"Vummidi, Dharshan","role":"aut"},{"family":"Chughtai","given":"Aamer","display":"Chughtai, Aamer","role":"aut"},{"given":"Ella A.","family":"Kazerooni","display":"Kazerooni, Ella A.","role":"aut"},{"given":"Timothy D.","family":"Johnson","display":"Johnson, Timothy D.","role":"aut"},{"family":"Han","given":"MeiLan K.","display":"Han, MeiLan K.","role":"aut"},{"family":"Hatt","given":"Charles R.","display":"Hatt, Charles R.","role":"aut"},{"role":"aut","display":"Galban, Craig J.","given":"Craig J.","family":"Galban"}],"title":[{"title":"Improved detection of air trapping on expiratory computed tomography using deep learning","title_sort":"Improved detection of air trapping on expiratory computed tomography using deep learning"}],"origin":[{"dateIssuedDisp":"March 24, 2021","dateIssuedKey":"2021"}],"note":["Gesehen am 12.05.2021"],"id":{"doi":["10.1371/journal.pone.0248902"],"eki":["1757500782"]},"recId":"1757500782","language":["eng"],"name":{"displayForm":["Sundaresh Ram, Benjamin A. Hoff, Alexander J. Bell, Stefanie Galban, Aleksa B. Fortuna, Oliver Weinheimer, Mark O. Wielpütz, Terry E. Robinson, Beverley Newman, Dharshan Vummidi, Aamer Chughtai, Ella A. Kazerooni, Timothy D. Johnson, MeiLan K. Han, Charles R. Hatt, Craig J. Galban"]},"type":{"media":"Online-Ressource","bibl":"article-journal"}} 
SRT |a RAMSUNDAREIMPROVEDDE2420