Exact constructions in the (non-linear) planar theory of elasticity: from elastic crystals to nematic elastomers

In this article we deduce necessary and sufficient conditions for the presence of “Conti-type”, highly symmetric, exactly stress-free constructions in the geometrically non-linear, planar n-well problem, generalising results of Conti et al. (Proc R Soc A 473(2203):20170235, 2017). Passing to the lim...

Full description

Saved in:
Bibliographic Details
Main Authors: Cesana, Pierluigi (Author) , Della Porta, Francesco (Author) , Rüland, Angkana (Author) , Zillinger, Christian (Author) , Zwicknagl, Barbara (Author)
Format: Article (Journal)
Language:English
Published: 08 April 2020
In: Archive for rational mechanics and analysis
Year: 2020, Volume: 237, Issue: 1, Pages: 383-445
ISSN:1432-0673
DOI:10.1007/s00205-020-01511-9
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00205-020-01511-9
Get full text
Author Notes:Pierluigi Cesana, Francesco Della Porta, Angkana Rüland, Christian Zillinger, Barbara Zwicknagl
Description
Summary:In this article we deduce necessary and sufficient conditions for the presence of “Conti-type”, highly symmetric, exactly stress-free constructions in the geometrically non-linear, planar n-well problem, generalising results of Conti et al. (Proc R Soc A 473(2203):20170235, 2017). Passing to the limit $$n\rightarrow \infty $$, this allows us to treat solid crystals and nematic elastomer differential inclusions simultaneously. In particular, we recover and generalise (non-linear) planar tripole star type deformations which were experimentally observed in Kitano and Kifune (Ultramicroscopy 39(1-4):279-286, 1991), Manolikas and Amelinckx (Physica Status Solidi (A) 60(2):607-617, 1980; Physica Status Solidi (A) 61(1):179-188, 1980). Furthermore, we discuss the corresponding geometrically linearised problem.
Item Description:Gesehen am 12.05.2021
Physical Description:Online Resource
ISSN:1432-0673
DOI:10.1007/s00205-020-01511-9