H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes

A finite element cochain complex on Cartesian meshes of any dimension based on the $$H^1$$-inner product is introduced. It yields $$H^1$$-conforming finite element spaces with exterior derivatives in $$H^1$$. We use a tensor product construction to obtain $$L^2$$-stable projectors into these spaces...

Full description

Saved in:
Bibliographic Details
Main Authors: Bonizzoni, Francesca (Author) , Kanschat, Guido (Author)
Format: Article (Journal)
Language:English
Published: 08 April 2021
In: Calcolo
Year: 2021, Volume: 58, Issue: 2, Pages: 1-29
ISSN:1126-5434
DOI:10.1007/s10092-021-00409-6
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10092-021-00409-6
Get full text
Author Notes:Francesca Bonizzoni, Guido Kanschat
Description
Summary:A finite element cochain complex on Cartesian meshes of any dimension based on the $$H^1$$-inner product is introduced. It yields $$H^1$$-conforming finite element spaces with exterior derivatives in $$H^1$$. We use a tensor product construction to obtain $$L^2$$-stable projectors into these spaces which commute with the exterior derivative. The finite element complex is generalized to a family of arbitrary order.
Item Description:Im Titel ist die Zahl "1" hochgestellt
Gesehen am 16.06.2021
Physical Description:Online Resource
ISSN:1126-5434
DOI:10.1007/s10092-021-00409-6