H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes

A finite element cochain complex on Cartesian meshes of any dimension based on the $$H^1$$-inner product is introduced. It yields $$H^1$$-conforming finite element spaces with exterior derivatives in $$H^1$$. We use a tensor product construction to obtain $$L^2$$-stable projectors into these spaces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bonizzoni, Francesca (VerfasserIn) , Kanschat, Guido (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 08 April 2021
In: Calcolo
Year: 2021, Jahrgang: 58, Heft: 2, Pages: 1-29
ISSN:1126-5434
DOI:10.1007/s10092-021-00409-6
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10092-021-00409-6
Volltext
Verfasserangaben:Francesca Bonizzoni, Guido Kanschat
Beschreibung
Zusammenfassung:A finite element cochain complex on Cartesian meshes of any dimension based on the $$H^1$$-inner product is introduced. It yields $$H^1$$-conforming finite element spaces with exterior derivatives in $$H^1$$. We use a tensor product construction to obtain $$L^2$$-stable projectors into these spaces which commute with the exterior derivative. The finite element complex is generalized to a family of arbitrary order.
Beschreibung:Im Titel ist die Zahl "1" hochgestellt
Gesehen am 16.06.2021
Beschreibung:Online Resource
ISSN:1126-5434
DOI:10.1007/s10092-021-00409-6