H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes
A finite element cochain complex on Cartesian meshes of any dimension based on the $$H^1$$-inner product is introduced. It yields $$H^1$$-conforming finite element spaces with exterior derivatives in $$H^1$$. We use a tensor product construction to obtain $$L^2$$-stable projectors into these spaces...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
08 April 2021
|
| In: |
Calcolo
Year: 2021, Jahrgang: 58, Heft: 2, Pages: 1-29 |
| ISSN: | 1126-5434 |
| DOI: | 10.1007/s10092-021-00409-6 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10092-021-00409-6 |
| Verfasserangaben: | Francesca Bonizzoni, Guido Kanschat |
| Zusammenfassung: | A finite element cochain complex on Cartesian meshes of any dimension based on the $$H^1$$-inner product is introduced. It yields $$H^1$$-conforming finite element spaces with exterior derivatives in $$H^1$$. We use a tensor product construction to obtain $$L^2$$-stable projectors into these spaces which commute with the exterior derivative. The finite element complex is generalized to a family of arbitrary order. |
|---|---|
| Beschreibung: | Im Titel ist die Zahl "1" hochgestellt Gesehen am 16.06.2021 |
| Beschreibung: | Online Resource |
| ISSN: | 1126-5434 |
| DOI: | 10.1007/s10092-021-00409-6 |