H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes
A finite element cochain complex on Cartesian meshes of any dimension based on the $$H^1$$-inner product is introduced. It yields $$H^1$$-conforming finite element spaces with exterior derivatives in $$H^1$$. We use a tensor product construction to obtain $$L^2$$-stable projectors into these spaces...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
08 April 2021
|
| In: |
Calcolo
Year: 2021, Jahrgang: 58, Heft: 2, Pages: 1-29 |
| ISSN: | 1126-5434 |
| DOI: | 10.1007/s10092-021-00409-6 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10092-021-00409-6 |
| Verfasserangaben: | Francesca Bonizzoni, Guido Kanschat |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1757772030 | ||
| 003 | DE-627 | ||
| 005 | 20220819204724.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210514s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1007/s10092-021-00409-6 |2 doi | |
| 035 | |a (DE-627)1757772030 | ||
| 035 | |a (DE-599)KXP1757772030 | ||
| 035 | |a (OCoLC)1341413119 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Bonizzoni, Francesca |e VerfasserIn |0 (DE-588)1233830856 |0 (DE-627)1758254173 |4 aut | |
| 245 | 1 | 0 | |a H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes |c Francesca Bonizzoni, Guido Kanschat |
| 246 | 3 | 0 | |a one |
| 246 | 3 | 3 | |a H 1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes |
| 264 | 1 | |c 08 April 2021 | |
| 300 | |a 29 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Im Titel ist die Zahl "1" hochgestellt | ||
| 500 | |a Gesehen am 16.06.2021 | ||
| 520 | |a A finite element cochain complex on Cartesian meshes of any dimension based on the $$H^1$$-inner product is introduced. It yields $$H^1$$-conforming finite element spaces with exterior derivatives in $$H^1$$. We use a tensor product construction to obtain $$L^2$$-stable projectors into these spaces which commute with the exterior derivative. The finite element complex is generalized to a family of arbitrary order. | ||
| 700 | 1 | |a Kanschat, Guido |e VerfasserIn |0 (DE-588)102535334X |0 (DE-627)72215612X |0 (DE-576)175755949 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Calcolo |d Milano : Springer Italia, 1964 |g 58(2021), 2, Artikel-ID 18, Seite 1-29 |h Online-Ressource |w (DE-627)271597038 |w (DE-600)1480691-5 |w (DE-576)079598714 |x 1126-5434 |7 nnas |a H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes |
| 773 | 1 | 8 | |g volume:58 |g year:2021 |g number:2 |g elocationid:18 |g pages:1-29 |g extent:29 |a H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes |
| 856 | 4 | 0 | |u https://doi.org/10.1007/s10092-021-00409-6 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210514 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 102535334X |a Kanschat, Guido |m 102535334X:Kanschat, Guido |d 700000 |d 708000 |e 700000PK102535334X |e 708000PK102535334X |k 0/700000/ |k 1/700000/708000/ |p 2 |y j | ||
| 999 | |a KXP-PPN1757772030 |e 3928340654 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"recId":"1757772030","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Im Titel ist die Zahl \"1\" hochgestellt","Gesehen am 16.06.2021"],"titleAlt":[{"title":"H 1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes"}],"person":[{"given":"Francesca","family":"Bonizzoni","role":"aut","roleDisplay":"VerfasserIn","display":"Bonizzoni, Francesca"},{"given":"Guido","family":"Kanschat","role":"aut","roleDisplay":"VerfasserIn","display":"Kanschat, Guido"}],"title":[{"title_sort":"H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes","title":"H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes"}],"relHost":[{"title":[{"title":"Calcolo","subtitle":"a quarterly on numerical analysis and theory of computation","title_sort":"Calcolo"}],"part":{"issue":"2","pages":"1-29","year":"2021","extent":"29","text":"58(2021), 2, Artikel-ID 18, Seite 1-29","volume":"58"},"pubHistory":["1.1964 -"],"language":["eng"],"recId":"271597038","note":["Gesehen am 21.11.08"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshesCalcolo","id":{"issn":["1126-5434"],"zdb":["1480691-5"],"eki":["271597038"]},"origin":[{"publisherPlace":"Milano ; Pisa","dateIssuedKey":"1964","publisher":"Springer Italia ; Ist.","dateIssuedDisp":"1964-"}],"name":{"displayForm":["pubbl. dal Consiglio Nazionale delle Ricerche (CNR) con la collab. della Associazione Italiana per il Calcolo Automatico (AICA) ; Istituto di Elaborazione delle Informazione del CNR"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"29 S."}],"name":{"displayForm":["Francesca Bonizzoni, Guido Kanschat"]},"id":{"eki":["1757772030"],"doi":["10.1007/s10092-021-00409-6"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"08 April 2021"}]} | ||
| SRT | |a BONIZZONIFH1CONFORMI0820 | ||