H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes

A finite element cochain complex on Cartesian meshes of any dimension based on the $$H^1$$-inner product is introduced. It yields $$H^1$$-conforming finite element spaces with exterior derivatives in $$H^1$$. We use a tensor product construction to obtain $$L^2$$-stable projectors into these spaces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bonizzoni, Francesca (VerfasserIn) , Kanschat, Guido (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 08 April 2021
In: Calcolo
Year: 2021, Jahrgang: 58, Heft: 2, Pages: 1-29
ISSN:1126-5434
DOI:10.1007/s10092-021-00409-6
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s10092-021-00409-6
Volltext
Verfasserangaben:Francesca Bonizzoni, Guido Kanschat

MARC

LEADER 00000caa a2200000 c 4500
001 1757772030
003 DE-627
005 20220819204724.0
007 cr uuu---uuuuu
008 210514s2021 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10092-021-00409-6  |2 doi 
035 |a (DE-627)1757772030 
035 |a (DE-599)KXP1757772030 
035 |a (OCoLC)1341413119 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Bonizzoni, Francesca  |e VerfasserIn  |0 (DE-588)1233830856  |0 (DE-627)1758254173  |4 aut 
245 1 0 |a H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes  |c Francesca Bonizzoni, Guido Kanschat 
246 3 0 |a one 
246 3 3 |a H 1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes 
264 1 |c 08 April 2021 
300 |a 29 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Im Titel ist die Zahl "1" hochgestellt 
500 |a Gesehen am 16.06.2021 
520 |a A finite element cochain complex on Cartesian meshes of any dimension based on the $$H^1$$-inner product is introduced. It yields $$H^1$$-conforming finite element spaces with exterior derivatives in $$H^1$$. We use a tensor product construction to obtain $$L^2$$-stable projectors into these spaces which commute with the exterior derivative. The finite element complex is generalized to a family of arbitrary order. 
700 1 |a Kanschat, Guido  |e VerfasserIn  |0 (DE-588)102535334X  |0 (DE-627)72215612X  |0 (DE-576)175755949  |4 aut 
773 0 8 |i Enthalten in  |t Calcolo  |d Milano : Springer Italia, 1964  |g 58(2021), 2, Artikel-ID 18, Seite 1-29  |h Online-Ressource  |w (DE-627)271597038  |w (DE-600)1480691-5  |w (DE-576)079598714  |x 1126-5434  |7 nnas  |a H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes 
773 1 8 |g volume:58  |g year:2021  |g number:2  |g elocationid:18  |g pages:1-29  |g extent:29  |a H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes 
856 4 0 |u https://doi.org/10.1007/s10092-021-00409-6  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210514 
993 |a Article 
994 |a 2021 
998 |g 102535334X  |a Kanschat, Guido  |m 102535334X:Kanschat, Guido  |d 700000  |d 708000  |e 700000PK102535334X  |e 708000PK102535334X  |k 0/700000/  |k 1/700000/708000/  |p 2  |y j 
999 |a KXP-PPN1757772030  |e 3928340654 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"recId":"1757772030","type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Im Titel ist die Zahl \"1\" hochgestellt","Gesehen am 16.06.2021"],"titleAlt":[{"title":"H 1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes"}],"person":[{"given":"Francesca","family":"Bonizzoni","role":"aut","roleDisplay":"VerfasserIn","display":"Bonizzoni, Francesca"},{"given":"Guido","family":"Kanschat","role":"aut","roleDisplay":"VerfasserIn","display":"Kanschat, Guido"}],"title":[{"title_sort":"H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes","title":"H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshes"}],"relHost":[{"title":[{"title":"Calcolo","subtitle":"a quarterly on numerical analysis and theory of computation","title_sort":"Calcolo"}],"part":{"issue":"2","pages":"1-29","year":"2021","extent":"29","text":"58(2021), 2, Artikel-ID 18, Seite 1-29","volume":"58"},"pubHistory":["1.1964 -"],"language":["eng"],"recId":"271597038","note":["Gesehen am 21.11.08"],"type":{"bibl":"periodical","media":"Online-Ressource"},"disp":"H1-conforming finite element cochain complexes and commuting quasi-interpolation operators on cartesian meshesCalcolo","id":{"issn":["1126-5434"],"zdb":["1480691-5"],"eki":["271597038"]},"origin":[{"publisherPlace":"Milano ; Pisa","dateIssuedKey":"1964","publisher":"Springer Italia ; Ist.","dateIssuedDisp":"1964-"}],"name":{"displayForm":["pubbl. dal Consiglio Nazionale delle Ricerche (CNR) con la collab. della Associazione Italiana per il Calcolo Automatico (AICA) ; Istituto di Elaborazione delle Informazione del CNR"]},"physDesc":[{"extent":"Online-Ressource"}]}],"physDesc":[{"extent":"29 S."}],"name":{"displayForm":["Francesca Bonizzoni, Guido Kanschat"]},"id":{"eki":["1757772030"],"doi":["10.1007/s10092-021-00409-6"]},"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"08 April 2021"}]} 
SRT |a BONIZZONIFH1CONFORMI0820