Quantitative Runge approximation and inverse problems

In this short note we provide a quantitative version of the classical Runge approximation property for second order elliptic operators. This relies on quantitative unique continuation results and duality arguments. We show that these estimates are essentially optimal. As a model application we provi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rüland, Angkana (VerfasserIn) , Salo, Mikko (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 21 Aug 2017
In: Arxiv
Year: 2017, Pages: 1-12
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1708.06307
Volltext
Verfasserangaben:Angkana Rüland and Mikko Salo
Beschreibung
Zusammenfassung:In this short note we provide a quantitative version of the classical Runge approximation property for second order elliptic operators. This relies on quantitative unique continuation results and duality arguments. We show that these estimates are essentially optimal. As a model application we provide a new proof of the result from \cite{F07}, \cite{AK12} on stability for the Calder\'on problem with local data.
Beschreibung:Gesehen am 26.05.2021
Beschreibung:Online Resource