Quantitative Runge approximation and inverse problems
In this short note we provide a quantitative version of the classical Runge approximation property for second order elliptic operators. This relies on quantitative unique continuation results and duality arguments. We show that these estimates are essentially optimal. As a model application we provi...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) Kapitel/Artikel |
| Sprache: | Englisch |
| Veröffentlicht: |
21 Aug 2017
|
| In: |
Arxiv
Year: 2017, Pages: 1-12 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1708.06307 |
| Verfasserangaben: | Angkana Rüland and Mikko Salo |
| Zusammenfassung: | In this short note we provide a quantitative version of the classical Runge approximation property for second order elliptic operators. This relies on quantitative unique continuation results and duality arguments. We show that these estimates are essentially optimal. As a model application we provide a new proof of the result from \cite{F07}, \cite{AK12} on stability for the Calder\'on problem with local data. |
|---|---|
| Beschreibung: | Gesehen am 26.05.2021 |
| Beschreibung: | Online Resource |