The variable coefficient thin obstacle problem: Carleman inequalities
In this article we present a new strategy of addressing the (variable coefficient) thin obstacle problem. Our approach is based on a (variable coefficient) Carleman estimate. This yields semi-continuity of the vanishing order, lower and uniform upper growth bounds of solutions and sufficient compact...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) Chapter/Article |
| Language: | English |
| Published: |
19 Jan 2015
|
| In: |
Arxiv
Year: 2015, Pages: 1-38 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1501.04496 |
| Author Notes: | Herbert Koch, Angkana Rüland, and Wenhui Shi |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1759077550 | ||
| 003 | DE-627 | ||
| 005 | 20220819215718.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210527s2015 xx |||||o 00| ||eng c | ||
| 035 | |a (DE-627)1759077550 | ||
| 035 | |a (DE-599)KXP1759077550 | ||
| 035 | |a (OCoLC)1341414681 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Koch, Herbert |d 1962- |e VerfasserIn |0 (DE-588)140473734 |0 (DE-627)703686720 |0 (DE-576)31824246X |4 aut | |
| 245 | 1 | 4 | |a The variable coefficient thin obstacle problem |b Carleman inequalities |c Herbert Koch, Angkana Rüland, and Wenhui Shi |
| 264 | 1 | |c 19 Jan 2015 | |
| 300 | |a 38 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Last revised 29 May 2015 (v2) | ||
| 500 | |a Gesehen am 27.05.2021 | ||
| 520 | |a In this article we present a new strategy of addressing the (variable coefficient) thin obstacle problem. Our approach is based on a (variable coefficient) Carleman estimate. This yields semi-continuity of the vanishing order, lower and uniform upper growth bounds of solutions and sufficient compactness properties in order to carry out a blow-up procedure. Moreover, the Carleman estimate implies the existence of homogeneous blow-up limits along certain sequences and ultimately leads to an almost optimal regularity statement. As it is a very robust tool, it allows us to consider the problem in the setting of Sobolev metrics, i.e. the coefficients are only $W^{1,p}$ regular for some $p>n+1$. These results provide the basis for our further analysis of the free boundary, the optimal ($C^{1,1/2}$-) regularity of solutions and a first order asymptotic expansion of solutions at the regular free boundary which is carried out in a follow-up article in the framework of $W^{1,p}$, $p>2(n+1)$, regular coefficients. | ||
| 650 | 4 | |a Mathematics - Analysis of PDEs | |
| 700 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 700 | 1 | |a Shi, Wenhui |e VerfasserIn |0 (DE-588)1234116103 |0 (DE-627)175899181X |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Arxiv |d Ithaca, NY : Cornell University, 1991 |g (2015), Artikel-ID 1501.04496, Seite 1-38 |h Online-Ressource |w (DE-627)509006531 |w (DE-600)2225896-6 |w (DE-576)28130436X |7 nnas |a The variable coefficient thin obstacle problem Carleman inequalities |
| 773 | 1 | 8 | |g year:2015 |g elocationid:1501.04496 |g pages:1-38 |g extent:38 |a The variable coefficient thin obstacle problem Carleman inequalities |
| 856 | 4 | 0 | |u http://arxiv.org/abs/1501.04496 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210527 | ||
| 993 | |a Article | ||
| 994 | |a 2015 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 2 | ||
| 999 | |a KXP-PPN1759077550 |e 3931853799 | ||
| BIB | |a Y | ||
| JSO | |a {"note":["Last revised 29 May 2015 (v2)","Gesehen am 27.05.2021"],"type":{"media":"Online-Ressource","bibl":"chapter"},"language":["eng"],"recId":"1759077550","person":[{"given":"Herbert","family":"Koch","role":"aut","display":"Koch, Herbert","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn","given":"Angkana","family":"Rüland"},{"given":"Wenhui","family":"Shi","role":"aut","roleDisplay":"VerfasserIn","display":"Shi, Wenhui"}],"title":[{"title_sort":"variable coefficient thin obstacle problem","title":"The variable coefficient thin obstacle problem","subtitle":"Carleman inequalities"}],"physDesc":[{"extent":"38 S."}],"relHost":[{"origin":[{"dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"disp":"The variable coefficient thin obstacle problem Carleman inequalitiesArxiv","note":["Gesehen am 28.05.2024"],"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"text":"(2015), Artikel-ID 1501.04496, Seite 1-38","extent":"38","year":"2015","pages":"1-38"}}],"name":{"displayForm":["Herbert Koch, Angkana Rüland, and Wenhui Shi"]},"origin":[{"dateIssuedKey":"2015","dateIssuedDisp":"19 Jan 2015"}],"id":{"eki":["1759077550"]}} | ||
| SRT | |a KOCHHERBERVARIABLECO1920 | ||