The variable coefficient thin obstacle problem: Carleman inequalities

In this article we present a new strategy of addressing the (variable coefficient) thin obstacle problem. Our approach is based on a (variable coefficient) Carleman estimate. This yields semi-continuity of the vanishing order, lower and uniform upper growth bounds of solutions and sufficient compact...

Full description

Saved in:
Bibliographic Details
Main Authors: Koch, Herbert (Author) , Rüland, Angkana (Author) , Shi, Wenhui (Author)
Format: Article (Journal) Chapter/Article
Language:English
Published: 19 Jan 2015
In: Arxiv
Year: 2015, Pages: 1-38
Online Access:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1501.04496
Get full text
Author Notes:Herbert Koch, Angkana Rüland, and Wenhui Shi

MARC

LEADER 00000caa a2200000 c 4500
001 1759077550
003 DE-627
005 20220819215718.0
007 cr uuu---uuuuu
008 210527s2015 xx |||||o 00| ||eng c
035 |a (DE-627)1759077550 
035 |a (DE-599)KXP1759077550 
035 |a (OCoLC)1341414681 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Koch, Herbert  |d 1962-  |e VerfasserIn  |0 (DE-588)140473734  |0 (DE-627)703686720  |0 (DE-576)31824246X  |4 aut 
245 1 4 |a The variable coefficient thin obstacle problem  |b Carleman inequalities  |c Herbert Koch, Angkana Rüland, and Wenhui Shi 
264 1 |c 19 Jan 2015 
300 |a 38 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Last revised 29 May 2015 (v2) 
500 |a Gesehen am 27.05.2021 
520 |a In this article we present a new strategy of addressing the (variable coefficient) thin obstacle problem. Our approach is based on a (variable coefficient) Carleman estimate. This yields semi-continuity of the vanishing order, lower and uniform upper growth bounds of solutions and sufficient compactness properties in order to carry out a blow-up procedure. Moreover, the Carleman estimate implies the existence of homogeneous blow-up limits along certain sequences and ultimately leads to an almost optimal regularity statement. As it is a very robust tool, it allows us to consider the problem in the setting of Sobolev metrics, i.e. the coefficients are only $W^{1,p}$ regular for some $p>n+1$. These results provide the basis for our further analysis of the free boundary, the optimal ($C^{1,1/2}$-) regularity of solutions and a first order asymptotic expansion of solutions at the regular free boundary which is carried out in a follow-up article in the framework of $W^{1,p}$, $p>2(n+1)$, regular coefficients. 
650 4 |a Mathematics - Analysis of PDEs 
700 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
700 1 |a Shi, Wenhui  |e VerfasserIn  |0 (DE-588)1234116103  |0 (DE-627)175899181X  |4 aut 
773 0 8 |i Enthalten in  |t Arxiv  |d Ithaca, NY : Cornell University, 1991  |g (2015), Artikel-ID 1501.04496, Seite 1-38  |h Online-Ressource  |w (DE-627)509006531  |w (DE-600)2225896-6  |w (DE-576)28130436X  |7 nnas  |a The variable coefficient thin obstacle problem Carleman inequalities 
773 1 8 |g year:2015  |g elocationid:1501.04496  |g pages:1-38  |g extent:38  |a The variable coefficient thin obstacle problem Carleman inequalities 
856 4 0 |u http://arxiv.org/abs/1501.04496  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210527 
993 |a Article 
994 |a 2015 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |p 2 
999 |a KXP-PPN1759077550  |e 3931853799 
BIB |a Y 
JSO |a {"note":["Last revised 29 May 2015 (v2)","Gesehen am 27.05.2021"],"type":{"media":"Online-Ressource","bibl":"chapter"},"language":["eng"],"recId":"1759077550","person":[{"given":"Herbert","family":"Koch","role":"aut","display":"Koch, Herbert","roleDisplay":"VerfasserIn"},{"role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn","given":"Angkana","family":"Rüland"},{"given":"Wenhui","family":"Shi","role":"aut","roleDisplay":"VerfasserIn","display":"Shi, Wenhui"}],"title":[{"title_sort":"variable coefficient thin obstacle problem","title":"The variable coefficient thin obstacle problem","subtitle":"Carleman inequalities"}],"physDesc":[{"extent":"38 S."}],"relHost":[{"origin":[{"dateIssuedDisp":"1991-","publisher":"Cornell University ; Arxiv.org","dateIssuedKey":"1991","publisherPlace":"Ithaca, NY ; [Erscheinungsort nicht ermittelbar]"}],"id":{"zdb":["2225896-6"],"eki":["509006531"]},"physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Arxiv","title":"Arxiv"}],"type":{"bibl":"edited-book","media":"Online-Ressource"},"disp":"The variable coefficient thin obstacle problem Carleman inequalitiesArxiv","note":["Gesehen am 28.05.2024"],"recId":"509006531","language":["eng"],"pubHistory":["1991 -"],"titleAlt":[{"title":"Arxiv.org"},{"title":"Arxiv.org e-print archive"},{"title":"Arxiv e-print archive"},{"title":"De.arxiv.org"}],"part":{"text":"(2015), Artikel-ID 1501.04496, Seite 1-38","extent":"38","year":"2015","pages":"1-38"}}],"name":{"displayForm":["Herbert Koch, Angkana Rüland, and Wenhui Shi"]},"origin":[{"dateIssuedKey":"2015","dateIssuedDisp":"19 Jan 2015"}],"id":{"eki":["1759077550"]}} 
SRT |a KOCHHERBERVARIABLECO1920