The variable coefficient thin obstacle problem: Carleman inequalities

In this article we present a new strategy of addressing the (variable coefficient) thin obstacle problem. Our approach is based on a (variable coefficient) Carleman estimate. This yields semi-continuity of the vanishing order, lower and uniform upper growth bounds of solutions and sufficient compact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Koch, Herbert (VerfasserIn) , Rüland, Angkana (VerfasserIn) , Shi, Wenhui (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 11 July 2016
In: Advances in mathematics
Year: 2016, Jahrgang: 301, Pages: 820-866
ISSN:1090-2082
DOI:10.1016/j.aim.2016.06.023
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aim.2016.06.023
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0001870816308350
Volltext
Verfasserangaben:Herbert Koch, Angkana Rüland, Wenhui Shi
Beschreibung
Zusammenfassung:In this article we present a new strategy of addressing the (variable coefficient) thin obstacle problem. Our approach is based on a (variable coefficient) Carleman estimate. This yields semi-continuity of the vanishing order, lower and uniform upper growth bounds of solutions and sufficient compactness properties in order to carry out a blow-up procedure. Moreover, the Carleman estimate implies the existence of homogeneous blow-up limits along certain sequences and ultimately leads to an almost optimal regularity statement. As it is a very robust tool, it allows us to consider the problem in the setting of Sobolev metrics, i.e. working on the upper half ball B1+⊂R+n+1, the coefficients are only W1,p regular for some p>n+1. These results provide the basis for our further analysis of the free boundary, the optimal regularity of solutions and a first order asymptotic expansion of solutions at the regular free boundary which is carried out in a follow-up article, [21], in the framework of W1,p, p>2(n+1), regular coefficients and W2,p, p>2(n+1), regular non-zero obstacles.
Beschreibung:Gesehen am 27.05.2021
Beschreibung:Online Resource
ISSN:1090-2082
DOI:10.1016/j.aim.2016.06.023