The variable coefficient thin obstacle problem: Carleman inequalities

In this article we present a new strategy of addressing the (variable coefficient) thin obstacle problem. Our approach is based on a (variable coefficient) Carleman estimate. This yields semi-continuity of the vanishing order, lower and uniform upper growth bounds of solutions and sufficient compact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Koch, Herbert (VerfasserIn) , Rüland, Angkana (VerfasserIn) , Shi, Wenhui (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 11 July 2016
In: Advances in mathematics
Year: 2016, Jahrgang: 301, Pages: 820-866
ISSN:1090-2082
DOI:10.1016/j.aim.2016.06.023
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aim.2016.06.023
Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0001870816308350
Volltext
Verfasserangaben:Herbert Koch, Angkana Rüland, Wenhui Shi

MARC

LEADER 00000caa a2200000 c 4500
001 1759077895
003 DE-627
005 20220819215722.0
007 cr uuu---uuuuu
008 210527s2016 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.aim.2016.06.023  |2 doi 
035 |a (DE-627)1759077895 
035 |a (DE-599)KXP1759077895 
035 |a (OCoLC)1341414797 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Koch, Herbert  |d 1962-  |e VerfasserIn  |0 (DE-588)140473734  |0 (DE-627)703686720  |0 (DE-576)31824246X  |4 aut 
245 1 4 |a The variable coefficient thin obstacle problem  |b Carleman inequalities  |c Herbert Koch, Angkana Rüland, Wenhui Shi 
264 1 |c 11 July 2016 
300 |a 47 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 27.05.2021 
520 |a In this article we present a new strategy of addressing the (variable coefficient) thin obstacle problem. Our approach is based on a (variable coefficient) Carleman estimate. This yields semi-continuity of the vanishing order, lower and uniform upper growth bounds of solutions and sufficient compactness properties in order to carry out a blow-up procedure. Moreover, the Carleman estimate implies the existence of homogeneous blow-up limits along certain sequences and ultimately leads to an almost optimal regularity statement. As it is a very robust tool, it allows us to consider the problem in the setting of Sobolev metrics, i.e. working on the upper half ball B1+⊂R+n+1, the coefficients are only W1,p regular for some p>n+1. These results provide the basis for our further analysis of the free boundary, the optimal regularity of solutions and a first order asymptotic expansion of solutions at the regular free boundary which is carried out in a follow-up article, [21], in the framework of W1,p, p>2(n+1), regular coefficients and W2,p, p>2(n+1), regular non-zero obstacles. 
650 4 |a Carleman estimates 
650 4 |a Thin free boundary 
650 4 |a Variable coefficient Signorini problem 
650 4 |a Variable coefficient thin obstacle problem 
700 1 |a Rüland, Angkana  |d 1987-  |e VerfasserIn  |0 (DE-588)1051987679  |0 (DE-627)787342378  |0 (DE-576)407655506  |4 aut 
700 1 |a Shi, Wenhui  |e VerfasserIn  |0 (DE-588)1234116103  |0 (DE-627)175899181X  |4 aut 
773 0 8 |i Enthalten in  |t Advances in mathematics  |d Amsterdam [u.a.] : Elsevier, 1961  |g 301(2016) vom: Okt., Seite 820-866  |h Online-Ressource  |w (DE-627)268759200  |w (DE-600)1472893-X  |w (DE-576)103373292  |x 1090-2082  |7 nnas  |a The variable coefficient thin obstacle problem Carleman inequalities 
773 1 8 |g volume:301  |g year:2016  |g month:10  |g pages:820-866  |g extent:47  |a The variable coefficient thin obstacle problem Carleman inequalities 
856 4 0 |u https://doi.org/10.1016/j.aim.2016.06.023  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.sciencedirect.com/science/article/pii/S0001870816308350  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210527 
993 |a Article 
994 |a 2016 
998 |g 1051987679  |a Rüland, Angkana  |m 1051987679:Rüland, Angkana  |p 2 
999 |a KXP-PPN1759077895  |e 3931854698 
BIB |a Y 
SER |a journal 
JSO |a {"language":["eng"],"recId":"1759077895","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 27.05.2021"],"title":[{"title_sort":"variable coefficient thin obstacle problem","title":"The variable coefficient thin obstacle problem","subtitle":"Carleman inequalities"}],"person":[{"role":"aut","display":"Koch, Herbert","roleDisplay":"VerfasserIn","given":"Herbert","family":"Koch"},{"given":"Angkana","family":"Rüland","role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Shi, Wenhui","given":"Wenhui","family":"Shi"}],"relHost":[{"pubHistory":["1.1961/65(1965) - 231.2012; Vol. 232.2013 -"],"part":{"extent":"47","text":"301(2016) vom: Okt., Seite 820-866","volume":"301","pages":"820-866","year":"2016"},"disp":"The variable coefficient thin obstacle problem Carleman inequalitiesAdvances in mathematics","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 14.09.2020"],"language":["eng"],"recId":"268759200","title":[{"title":"Advances in mathematics","title_sort":"Advances in mathematics"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.] ; Orlando, Fla. ; Brugge ; San Diego, Calif. [u.a.]","dateIssuedDisp":"1961-","dateIssuedKey":"1961","publisher":"Elsevier ; Academic Press ; Academic Press ; Academic Press ; Acad. Press"}],"id":{"zdb":["1472893-X"],"eki":["268759200"],"issn":["1090-2082"]}}],"physDesc":[{"extent":"47 S."}],"id":{"doi":["10.1016/j.aim.2016.06.023"],"eki":["1759077895"]},"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"11 July 2016"}],"name":{"displayForm":["Herbert Koch, Angkana Rüland, Wenhui Shi"]}} 
SRT |a KOCHHERBERVARIABLECO1120