The variable coefficient thin obstacle problem: Carleman inequalities
In this article we present a new strategy of addressing the (variable coefficient) thin obstacle problem. Our approach is based on a (variable coefficient) Carleman estimate. This yields semi-continuity of the vanishing order, lower and uniform upper growth bounds of solutions and sufficient compact...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
11 July 2016
|
| In: |
Advances in mathematics
Year: 2016, Jahrgang: 301, Pages: 820-866 |
| ISSN: | 1090-2082 |
| DOI: | 10.1016/j.aim.2016.06.023 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1016/j.aim.2016.06.023 Verlag, lizenzpflichtig, Volltext: https://www.sciencedirect.com/science/article/pii/S0001870816308350 |
| Verfasserangaben: | Herbert Koch, Angkana Rüland, Wenhui Shi |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1759077895 | ||
| 003 | DE-627 | ||
| 005 | 20220819215722.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210527s2016 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1016/j.aim.2016.06.023 |2 doi | |
| 035 | |a (DE-627)1759077895 | ||
| 035 | |a (DE-599)KXP1759077895 | ||
| 035 | |a (OCoLC)1341414797 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Koch, Herbert |d 1962- |e VerfasserIn |0 (DE-588)140473734 |0 (DE-627)703686720 |0 (DE-576)31824246X |4 aut | |
| 245 | 1 | 4 | |a The variable coefficient thin obstacle problem |b Carleman inequalities |c Herbert Koch, Angkana Rüland, Wenhui Shi |
| 264 | 1 | |c 11 July 2016 | |
| 300 | |a 47 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 27.05.2021 | ||
| 520 | |a In this article we present a new strategy of addressing the (variable coefficient) thin obstacle problem. Our approach is based on a (variable coefficient) Carleman estimate. This yields semi-continuity of the vanishing order, lower and uniform upper growth bounds of solutions and sufficient compactness properties in order to carry out a blow-up procedure. Moreover, the Carleman estimate implies the existence of homogeneous blow-up limits along certain sequences and ultimately leads to an almost optimal regularity statement. As it is a very robust tool, it allows us to consider the problem in the setting of Sobolev metrics, i.e. working on the upper half ball B1+⊂R+n+1, the coefficients are only W1,p regular for some p>n+1. These results provide the basis for our further analysis of the free boundary, the optimal regularity of solutions and a first order asymptotic expansion of solutions at the regular free boundary which is carried out in a follow-up article, [21], in the framework of W1,p, p>2(n+1), regular coefficients and W2,p, p>2(n+1), regular non-zero obstacles. | ||
| 650 | 4 | |a Carleman estimates | |
| 650 | 4 | |a Thin free boundary | |
| 650 | 4 | |a Variable coefficient Signorini problem | |
| 650 | 4 | |a Variable coefficient thin obstacle problem | |
| 700 | 1 | |a Rüland, Angkana |d 1987- |e VerfasserIn |0 (DE-588)1051987679 |0 (DE-627)787342378 |0 (DE-576)407655506 |4 aut | |
| 700 | 1 | |a Shi, Wenhui |e VerfasserIn |0 (DE-588)1234116103 |0 (DE-627)175899181X |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Advances in mathematics |d Amsterdam [u.a.] : Elsevier, 1961 |g 301(2016) vom: Okt., Seite 820-866 |h Online-Ressource |w (DE-627)268759200 |w (DE-600)1472893-X |w (DE-576)103373292 |x 1090-2082 |7 nnas |a The variable coefficient thin obstacle problem Carleman inequalities |
| 773 | 1 | 8 | |g volume:301 |g year:2016 |g month:10 |g pages:820-866 |g extent:47 |a The variable coefficient thin obstacle problem Carleman inequalities |
| 856 | 4 | 0 | |u https://doi.org/10.1016/j.aim.2016.06.023 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.sciencedirect.com/science/article/pii/S0001870816308350 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210527 | ||
| 993 | |a Article | ||
| 994 | |a 2016 | ||
| 998 | |g 1051987679 |a Rüland, Angkana |m 1051987679:Rüland, Angkana |p 2 | ||
| 999 | |a KXP-PPN1759077895 |e 3931854698 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"language":["eng"],"recId":"1759077895","type":{"bibl":"article-journal","media":"Online-Ressource"},"note":["Gesehen am 27.05.2021"],"title":[{"title_sort":"variable coefficient thin obstacle problem","title":"The variable coefficient thin obstacle problem","subtitle":"Carleman inequalities"}],"person":[{"role":"aut","display":"Koch, Herbert","roleDisplay":"VerfasserIn","given":"Herbert","family":"Koch"},{"given":"Angkana","family":"Rüland","role":"aut","display":"Rüland, Angkana","roleDisplay":"VerfasserIn"},{"role":"aut","roleDisplay":"VerfasserIn","display":"Shi, Wenhui","given":"Wenhui","family":"Shi"}],"relHost":[{"pubHistory":["1.1961/65(1965) - 231.2012; Vol. 232.2013 -"],"part":{"extent":"47","text":"301(2016) vom: Okt., Seite 820-866","volume":"301","pages":"820-866","year":"2016"},"disp":"The variable coefficient thin obstacle problem Carleman inequalitiesAdvances in mathematics","type":{"media":"Online-Ressource","bibl":"periodical"},"note":["Gesehen am 14.09.2020"],"language":["eng"],"recId":"268759200","title":[{"title":"Advances in mathematics","title_sort":"Advances in mathematics"}],"physDesc":[{"extent":"Online-Ressource"}],"origin":[{"publisherPlace":"Amsterdam [u.a.] ; New York, NY [u.a.] ; Orlando, Fla. ; Brugge ; San Diego, Calif. [u.a.]","dateIssuedDisp":"1961-","dateIssuedKey":"1961","publisher":"Elsevier ; Academic Press ; Academic Press ; Academic Press ; Acad. Press"}],"id":{"zdb":["1472893-X"],"eki":["268759200"],"issn":["1090-2082"]}}],"physDesc":[{"extent":"47 S."}],"id":{"doi":["10.1016/j.aim.2016.06.023"],"eki":["1759077895"]},"origin":[{"dateIssuedKey":"2016","dateIssuedDisp":"11 July 2016"}],"name":{"displayForm":["Herbert Koch, Angkana Rüland, Wenhui Shi"]}} | ||
| SRT | |a KOCHHERBERVARIABLECO1120 | ||