On the backward uniqueness property for the heat equation in two-dimensional conical domains

In this article we deal with the backward uniqueness property of the heat equation in conical domains in two spatial dimensions via Carleman inequality techniques. Using a microlocal interpretation of the pseudoconvexity condition, we improve the bounds of Šverák and Li (Commun. Partial Differ. Eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rüland, Angkana (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 12 June 2015
In: Manuscripta mathematica
Year: 2015, Jahrgang: 147, Heft: 3, Pages: 415-436
ISSN:1432-1785
DOI:10.1007/s00229-015-0764-4
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00229-015-0764-4
Volltext
Verfasserangaben:Angkana Rüland
Beschreibung
Zusammenfassung:In this article we deal with the backward uniqueness property of the heat equation in conical domains in two spatial dimensions via Carleman inequality techniques. Using a microlocal interpretation of the pseudoconvexity condition, we improve the bounds of Šverák and Li (Commun. Partial Differ. Equ. 37(8):1414-1429, 2012) on the minimal angle in which the backward uniqueness property is displayed: We reach angles of slightly less than $${95^{\circ}}$$. Via two-dimensional limiting Carleman weights we obtain the uniqueness of possible controls of the heat equation with lower order perturbations in conical domains with opening angles larger than $${90^{\circ}}$$.
Beschreibung:Gesehen am 27.05.2021
Beschreibung:Online Resource
ISSN:1432-1785
DOI:10.1007/s00229-015-0764-4