On the backward uniqueness property for the heat equation in two-dimensional conical domains

In this article we deal with the backward uniqueness property of the heat equation in conical domains in two spatial dimensions via Carleman inequality techniques. Using a microlocal interpretation of the pseudoconvexity condition, we improve the bounds of Šverák and Li (Commun. Partial Differ. Eq...

Full description

Saved in:
Bibliographic Details
Main Author: Rüland, Angkana (Author)
Format: Article (Journal)
Language:English
Published: 12 June 2015
In: Manuscripta mathematica
Year: 2015, Volume: 147, Issue: 3, Pages: 415-436
ISSN:1432-1785
DOI:10.1007/s00229-015-0764-4
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00229-015-0764-4
Get full text
Author Notes:Angkana Rüland
Description
Summary:In this article we deal with the backward uniqueness property of the heat equation in conical domains in two spatial dimensions via Carleman inequality techniques. Using a microlocal interpretation of the pseudoconvexity condition, we improve the bounds of Šverák and Li (Commun. Partial Differ. Equ. 37(8):1414-1429, 2012) on the minimal angle in which the backward uniqueness property is displayed: We reach angles of slightly less than $${95^{\circ}}$$. Via two-dimensional limiting Carleman weights we obtain the uniqueness of possible controls of the heat equation with lower order perturbations in conical domains with opening angles larger than $${90^{\circ}}$$.
Item Description:Gesehen am 27.05.2021
Physical Description:Online Resource
ISSN:1432-1785
DOI:10.1007/s00229-015-0764-4