On the backward uniqueness property for the heat equation in two-dimensional conical domains

In this article we deal with the backward uniqueness property of the heat equation in conical domains in two spatial dimensions via Carleman inequality techniques. Using a microlocal interpretation of the pseudoconvexity condition, we improve the bounds of \v{S}ver\'ak and Li on the minimal ang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rüland, Angkana (VerfasserIn)
Dokumenttyp: Article (Journal) Kapitel/Artikel
Sprache:Englisch
Veröffentlicht: 24 Oct 2013
In: Arxiv
Year: 2013, Pages: 1-23
Online-Zugang:Verlag, lizenzpflichtig, Volltext: http://arxiv.org/abs/1310.6655
Volltext
Verfasserangaben:Angkana Rüland
Beschreibung
Zusammenfassung:In this article we deal with the backward uniqueness property of the heat equation in conical domains in two spatial dimensions via Carleman inequality techniques. Using a microlocal interpretation of the pseudoconvexity condition, we improve the bounds of \v{S}ver\'ak and Li on the minimal angle in which the backward uniqueness property is displayed: We reach angles of slightly less than $95^{\circ}$. Via two-dimensional limiting Carleman weights we obtain the uniqueness of possible controls of the heat equation with lower order perturbations in conical domains with opening angles larger than $90^{\circ}
Beschreibung:Gesehen am 27.05.2021
Beschreibung:Online Resource