The cubic-to-orthorhombic phase transition: rigidity and non-rigidity properties in the linear theory of elasticity
In this paper we investigate the cubic-to-orthorhombic phase transition in the framework of linear elasticity. Using convex integration techniques, we prove that this phase transition represents one of the simplest three-dimensional examples in which already the linearised theory of elasticity displ...
Gespeichert in:
| 1. Verfasser: | |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
16 February 2016
|
| In: |
Archive for rational mechanics and analysis
Year: 2016, Jahrgang: 221, Heft: 1, Pages: 23-106 |
| ISSN: | 1432-0673 |
| DOI: | 10.1007/s00205-016-0971-5 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00205-016-0971-5 |
| Verfasserangaben: | Angkana Rüland |
| Zusammenfassung: | In this paper we investigate the cubic-to-orthorhombic phase transition in the framework of linear elasticity. Using convex integration techniques, we prove that this phase transition represents one of the simplest three-dimensional examples in which already the linearised theory of elasticity displays non-rigidity properties. As a complementary result, we demonstrate that surface energy constraints rule out such highly oscillatory behaviour. We give a full characterization of all possibly emerging patterns for generic material parameters. |
|---|---|
| Beschreibung: | Gesehen am 27.05.2021 |
| Beschreibung: | Online Resource |
| ISSN: | 1432-0673 |
| DOI: | 10.1007/s00205-016-0971-5 |