A quotient of the Lubin-Tate tower II

In this article we construct the quotient M1/P(K) of the infinite-level Lubin–Tate spaceM1 by the parabolic subgroup P(K) ⊂ GLn(K) of block form (n − 1, 1) as a perfectoid space, generalizing the results of Ludwig (Forum Math Sigma 5:e17, 41, 2017) to arbitrary n and K/Qp finite. For this we prove s...

Full description

Saved in:
Bibliographic Details
Main Authors: Johansson, Christian (Author) , Ludwig, Judith (Author) , Hansen, David (Author)
Format: Article (Journal)
Language:English
Published: 2021
In: Mathematische Annalen
Year: 2020, Volume: 380, Issue: 1, Pages: 43-89
ISSN:1432-1807
DOI:10.1007/s00208-020-02104-3
Online Access:Resolving-System, lizenzpflichtig, Volltext: https://doi.org/10.1007/s00208-020-02104-3
Verlag, lizenzpflichtig, Volltext: https://link.springer.com/article/10.1007%2Fs00208-020-02104-3
Get full text
Author Notes:Christian Johansson, Judith Ludwig, David Hansen
Description
Summary:In this article we construct the quotient M1/P(K) of the infinite-level Lubin–Tate spaceM1 by the parabolic subgroup P(K) ⊂ GLn(K) of block form (n − 1, 1) as a perfectoid space, generalizing the results of Ludwig (Forum Math Sigma 5:e17, 41, 2017) to arbitrary n and K/Qp finite. For this we prove some perfectoidness results for certain Harris–Taylor Shimura varieties at infinite level. As an application of the quotient construction we show a vanishing theorem for Scholze’s candidate for the mod p Jacquet–Langlands and mod p local Langlands correspondence. An appendix by David Hansen gives a local proof of perfectoidness of M1/P(K) when n = 2, and shows thatM1/Q(K) is not perfectoid for maximal parabolics Q not conjugate to P.
Item Description:Published online: 9 November 2020
Gesehen am 01.06.2021
Physical Description:Online Resource
ISSN:1432-1807
DOI:10.1007/s00208-020-02104-3