Cusp excursion in hyperbolic manifolds and singularity of harmonic measure

We generalize the notion of cusp excursion of geodesic rays by introducing for any <inline-formula><tex-math id="M1">\begin{document}$ k\geq 1 $\end{document}</tex-math></inline-formula> the <i><inline-formula><tex-math id="M2">\begin{doc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Randecker, Anja (VerfasserIn) , Tiozzo, Giulio (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2021
In: Journal of modern dynamics
Year: 2021, Jahrgang: 17, Pages: 183-211
ISSN:1930-532X
DOI:10.3934/jmd.2021006
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3934/jmd.2021006
Verlag, lizenzpflichtig, Volltext: https://www.aimsciences.org/article/doi/10.3934/jmd.2021006
Volltext
Verfasserangaben:Anja Randecker and Giulio Tiozzo
Beschreibung
Zusammenfassung:We generalize the notion of cusp excursion of geodesic rays by introducing for any <inline-formula><tex-math id="M1">\begin{document}$ k\geq 1 $\end{document}</tex-math></inline-formula> the <i><inline-formula><tex-math id="M2">\begin{document}$ k^\text{th} $\end{document}</tex-math></inline-formula> excursion</i> in the cusps of a hyperbolic <inline-formula><tex-math id="M3">\begin{document}$ N $\end{document}</tex-math></inline-formula>-manifold of finite volume. We show that on one hand, this excursion is at most linear for geodesics that are generic with respect to the hitting measure of a random walk. On the other hand, for <inline-formula><tex-math id="M4">\begin{document}$ k = N-1 $\end{document}</tex-math></inline-formula>, the <inline-formula><tex-math id="M5">\begin{document}$ k^\text{th} $\end{document}</tex-math></inline-formula> excursion is superlinear for geodesics that are generic with respect to the Lebesgue measure. We use this to show that the hitting measure and the Lebesgue measure on the boundary of hyperbolic space <inline-formula><tex-math id="M6">\begin{document}$ \mathbb{H}^N $\end{document}</tex-math></inline-formula> for any <inline-formula><tex-math id="M7">\begin{document}$ N \geq 2 $\end{document}</tex-math></inline-formula> are mutually singular.
Beschreibung:Gesehen am 16.06.2021
Beschreibung:Online Resource
ISSN:1930-532X
DOI:10.3934/jmd.2021006