Cusp excursion in hyperbolic manifolds and singularity of harmonic measure

We generalize the notion of cusp excursion of geodesic rays by introducing for any <inline-formula><tex-math id="M1">\begin{document}$ k\geq 1 $\end{document}</tex-math></inline-formula> the <i><inline-formula><tex-math id="M2">\begin{doc...

Full description

Saved in:
Bibliographic Details
Main Authors: Randecker, Anja (Author) , Tiozzo, Giulio (Author)
Format: Article (Journal)
Language:English
Published: 2021
In: Journal of modern dynamics
Year: 2021, Volume: 17, Pages: 183-211
ISSN:1930-532X
DOI:10.3934/jmd.2021006
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3934/jmd.2021006
Verlag, lizenzpflichtig, Volltext: https://www.aimsciences.org/article/doi/10.3934/jmd.2021006
Get full text
Author Notes:Anja Randecker and Giulio Tiozzo
Description
Summary:We generalize the notion of cusp excursion of geodesic rays by introducing for any <inline-formula><tex-math id="M1">\begin{document}$ k\geq 1 $\end{document}</tex-math></inline-formula> the <i><inline-formula><tex-math id="M2">\begin{document}$ k^\text{th} $\end{document}</tex-math></inline-formula> excursion</i> in the cusps of a hyperbolic <inline-formula><tex-math id="M3">\begin{document}$ N $\end{document}</tex-math></inline-formula>-manifold of finite volume. We show that on one hand, this excursion is at most linear for geodesics that are generic with respect to the hitting measure of a random walk. On the other hand, for <inline-formula><tex-math id="M4">\begin{document}$ k = N-1 $\end{document}</tex-math></inline-formula>, the <inline-formula><tex-math id="M5">\begin{document}$ k^\text{th} $\end{document}</tex-math></inline-formula> excursion is superlinear for geodesics that are generic with respect to the Lebesgue measure. We use this to show that the hitting measure and the Lebesgue measure on the boundary of hyperbolic space <inline-formula><tex-math id="M6">\begin{document}$ \mathbb{H}^N $\end{document}</tex-math></inline-formula> for any <inline-formula><tex-math id="M7">\begin{document}$ N \geq 2 $\end{document}</tex-math></inline-formula> are mutually singular.
Item Description:Gesehen am 16.06.2021
Physical Description:Online Resource
ISSN:1930-532X
DOI:10.3934/jmd.2021006