Cusp excursion in hyperbolic manifolds and singularity of harmonic measure
We generalize the notion of cusp excursion of geodesic rays by introducing for any <inline-formula><tex-math id="M1">\begin{document}$ k\geq 1 $\end{document}</tex-math></inline-formula> the <i><inline-formula><tex-math id="M2">\begin{doc...
Gespeichert in:
| Hauptverfasser: | , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
2021
|
| In: |
Journal of modern dynamics
Year: 2021, Jahrgang: 17, Pages: 183-211 |
| ISSN: | 1930-532X |
| DOI: | 10.3934/jmd.2021006 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3934/jmd.2021006 Verlag, lizenzpflichtig, Volltext: https://www.aimsciences.org/article/doi/10.3934/jmd.2021006 |
| Verfasserangaben: | Anja Randecker and Giulio Tiozzo |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1760543675 | ||
| 003 | DE-627 | ||
| 005 | 20220819231424.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210616s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.3934/jmd.2021006 |2 doi | |
| 035 | |a (DE-627)1760543675 | ||
| 035 | |a (DE-599)KXP1760543675 | ||
| 035 | |a (OCoLC)1341416301 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a Randecker, Anja |e VerfasserIn |0 (DE-588)1031933719 |0 (DE-627)737805277 |0 (DE-576)379636166 |4 aut | |
| 245 | 1 | 0 | |a Cusp excursion in hyperbolic manifolds and singularity of harmonic measure |c Anja Randecker and Giulio Tiozzo |
| 264 | 1 | |c 2021 | |
| 300 | |a 29 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 16.06.2021 | ||
| 520 | |a We generalize the notion of cusp excursion of geodesic rays by introducing for any <inline-formula><tex-math id="M1">\begin{document}$ k\geq 1 $\end{document}</tex-math></inline-formula> the <i><inline-formula><tex-math id="M2">\begin{document}$ k^\text{th} $\end{document}</tex-math></inline-formula> excursion</i> in the cusps of a hyperbolic <inline-formula><tex-math id="M3">\begin{document}$ N $\end{document}</tex-math></inline-formula>-manifold of finite volume. We show that on one hand, this excursion is at most linear for geodesics that are generic with respect to the hitting measure of a random walk. On the other hand, for <inline-formula><tex-math id="M4">\begin{document}$ k = N-1 $\end{document}</tex-math></inline-formula>, the <inline-formula><tex-math id="M5">\begin{document}$ k^\text{th} $\end{document}</tex-math></inline-formula> excursion is superlinear for geodesics that are generic with respect to the Lebesgue measure. We use this to show that the hitting measure and the Lebesgue measure on the boundary of hyperbolic space <inline-formula><tex-math id="M6">\begin{document}$ \mathbb{H}^N $\end{document}</tex-math></inline-formula> for any <inline-formula><tex-math id="M7">\begin{document}$ N \geq 2 $\end{document}</tex-math></inline-formula> are mutually singular. | ||
| 700 | 1 | |a Tiozzo, Giulio |e VerfasserIn |0 (DE-588)1235532631 |0 (DE-627)1760543896 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Journal of modern dynamics |d Springfield, Mo. : AIMS, 2007 |g 17(2021), Seite 183-211 |h Online-Ressource |w (DE-627)538636696 |w (DE-600)2380316-2 |w (DE-576)367397765 |x 1930-532X |7 nnas |a Cusp excursion in hyperbolic manifolds and singularity of harmonic measure |
| 773 | 1 | 8 | |g volume:17 |g year:2021 |g pages:183-211 |g extent:29 |a Cusp excursion in hyperbolic manifolds and singularity of harmonic measure |
| 856 | 4 | 0 | |u https://doi.org/10.3934/jmd.2021006 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://www.aimsciences.org/article/doi/10.3934/jmd.2021006 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210616 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1031933719 |a Randecker, Anja |m 1031933719:Randecker, Anja |d 110000 |d 110100 |d 110000 |d 110400 |e 110000PR1031933719 |e 110100PR1031933719 |e 110000PR1031933719 |e 110400PR1031933719 |k 0/110000/ |k 1/110000/110100/ |k 0/110000/ |k 1/110000/110400/ |p 1 |x j | ||
| 999 | |a KXP-PPN1760543675 |e 3938698896 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"physDesc":[{"extent":"29 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["American Institute of Mathematical Sciences ; Center for Dynamics and Geometry at the Pennsylvania State University"]},"id":{"eki":["538636696"],"zdb":["2380316-2"],"issn":["1930-532X"]},"origin":[{"dateIssuedDisp":"2007-","dateIssuedKey":"2007","publisher":"AIMS","publisherPlace":"Springfield, Mo."}],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"American Institute of Mathematical Sciences","role":"isb"}],"language":["eng"],"recId":"538636696","note":["Gesehen am 03.07.24"],"disp":"Cusp excursion in hyperbolic manifolds and singularity of harmonic measureJournal of modern dynamics","type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"pages":"183-211","year":"2021","extent":"29","volume":"17","text":"17(2021), Seite 183-211"},"pubHistory":["1.2007 -"],"title":[{"title":"Journal of modern dynamics","title_sort":"Journal of modern dynamics"}]}],"origin":[{"dateIssuedDisp":"2021","dateIssuedKey":"2021"}],"id":{"doi":["10.3934/jmd.2021006"],"eki":["1760543675"]},"name":{"displayForm":["Anja Randecker and Giulio Tiozzo"]},"note":["Gesehen am 16.06.2021"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1760543675","language":["eng"],"title":[{"title":"Cusp excursion in hyperbolic manifolds and singularity of harmonic measure","title_sort":"Cusp excursion in hyperbolic manifolds and singularity of harmonic measure"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Randecker, Anja","given":"Anja","family":"Randecker"},{"roleDisplay":"VerfasserIn","display":"Tiozzo, Giulio","role":"aut","family":"Tiozzo","given":"Giulio"}]} | ||
| SRT | |a RANDECKERACUSPEXCURS2021 | ||