Cusp excursion in hyperbolic manifolds and singularity of harmonic measure

We generalize the notion of cusp excursion of geodesic rays by introducing for any <inline-formula><tex-math id="M1">\begin{document}$ k\geq 1 $\end{document}</tex-math></inline-formula> the <i><inline-formula><tex-math id="M2">\begin{doc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Randecker, Anja (VerfasserIn) , Tiozzo, Giulio (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 2021
In: Journal of modern dynamics
Year: 2021, Jahrgang: 17, Pages: 183-211
ISSN:1930-532X
DOI:10.3934/jmd.2021006
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.3934/jmd.2021006
Verlag, lizenzpflichtig, Volltext: https://www.aimsciences.org/article/doi/10.3934/jmd.2021006
Volltext
Verfasserangaben:Anja Randecker and Giulio Tiozzo

MARC

LEADER 00000caa a2200000 c 4500
001 1760543675
003 DE-627
005 20220819231424.0
007 cr uuu---uuuuu
008 210616s2021 xx |||||o 00| ||eng c
024 7 |a 10.3934/jmd.2021006  |2 doi 
035 |a (DE-627)1760543675 
035 |a (DE-599)KXP1760543675 
035 |a (OCoLC)1341416301 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a Randecker, Anja  |e VerfasserIn  |0 (DE-588)1031933719  |0 (DE-627)737805277  |0 (DE-576)379636166  |4 aut 
245 1 0 |a Cusp excursion in hyperbolic manifolds and singularity of harmonic measure  |c Anja Randecker and Giulio Tiozzo 
264 1 |c 2021 
300 |a 29 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 16.06.2021 
520 |a We generalize the notion of cusp excursion of geodesic rays by introducing for any <inline-formula><tex-math id="M1">\begin{document}$ k\geq 1 $\end{document}</tex-math></inline-formula> the <i><inline-formula><tex-math id="M2">\begin{document}$ k^\text{th} $\end{document}</tex-math></inline-formula> excursion</i> in the cusps of a hyperbolic <inline-formula><tex-math id="M3">\begin{document}$ N $\end{document}</tex-math></inline-formula>-manifold of finite volume. We show that on one hand, this excursion is at most linear for geodesics that are generic with respect to the hitting measure of a random walk. On the other hand, for <inline-formula><tex-math id="M4">\begin{document}$ k = N-1 $\end{document}</tex-math></inline-formula>, the <inline-formula><tex-math id="M5">\begin{document}$ k^\text{th} $\end{document}</tex-math></inline-formula> excursion is superlinear for geodesics that are generic with respect to the Lebesgue measure. We use this to show that the hitting measure and the Lebesgue measure on the boundary of hyperbolic space <inline-formula><tex-math id="M6">\begin{document}$ \mathbb{H}^N $\end{document}</tex-math></inline-formula> for any <inline-formula><tex-math id="M7">\begin{document}$ N \geq 2 $\end{document}</tex-math></inline-formula> are mutually singular. 
700 1 |a Tiozzo, Giulio  |e VerfasserIn  |0 (DE-588)1235532631  |0 (DE-627)1760543896  |4 aut 
773 0 8 |i Enthalten in  |t Journal of modern dynamics  |d Springfield, Mo. : AIMS, 2007  |g 17(2021), Seite 183-211  |h Online-Ressource  |w (DE-627)538636696  |w (DE-600)2380316-2  |w (DE-576)367397765  |x 1930-532X  |7 nnas  |a Cusp excursion in hyperbolic manifolds and singularity of harmonic measure 
773 1 8 |g volume:17  |g year:2021  |g pages:183-211  |g extent:29  |a Cusp excursion in hyperbolic manifolds and singularity of harmonic measure 
856 4 0 |u https://doi.org/10.3934/jmd.2021006  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.aimsciences.org/article/doi/10.3934/jmd.2021006  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210616 
993 |a Article 
994 |a 2021 
998 |g 1031933719  |a Randecker, Anja  |m 1031933719:Randecker, Anja  |d 110000  |d 110100  |d 110000  |d 110400  |e 110000PR1031933719  |e 110100PR1031933719  |e 110000PR1031933719  |e 110400PR1031933719  |k 0/110000/  |k 1/110000/110100/  |k 0/110000/  |k 1/110000/110400/  |p 1  |x j 
999 |a KXP-PPN1760543675  |e 3938698896 
BIB |a Y 
SER |a journal 
JSO |a {"physDesc":[{"extent":"29 S."}],"relHost":[{"physDesc":[{"extent":"Online-Ressource"}],"name":{"displayForm":["American Institute of Mathematical Sciences ; Center for Dynamics and Geometry at the Pennsylvania State University"]},"id":{"eki":["538636696"],"zdb":["2380316-2"],"issn":["1930-532X"]},"origin":[{"dateIssuedDisp":"2007-","dateIssuedKey":"2007","publisher":"AIMS","publisherPlace":"Springfield, Mo."}],"corporate":[{"roleDisplay":"Herausgebendes Organ","display":"American Institute of Mathematical Sciences","role":"isb"}],"language":["eng"],"recId":"538636696","note":["Gesehen am 03.07.24"],"disp":"Cusp excursion in hyperbolic manifolds and singularity of harmonic measureJournal of modern dynamics","type":{"bibl":"periodical","media":"Online-Ressource"},"part":{"pages":"183-211","year":"2021","extent":"29","volume":"17","text":"17(2021), Seite 183-211"},"pubHistory":["1.2007 -"],"title":[{"title":"Journal of modern dynamics","title_sort":"Journal of modern dynamics"}]}],"origin":[{"dateIssuedDisp":"2021","dateIssuedKey":"2021"}],"id":{"doi":["10.3934/jmd.2021006"],"eki":["1760543675"]},"name":{"displayForm":["Anja Randecker and Giulio Tiozzo"]},"note":["Gesehen am 16.06.2021"],"type":{"bibl":"article-journal","media":"Online-Ressource"},"recId":"1760543675","language":["eng"],"title":[{"title":"Cusp excursion in hyperbolic manifolds and singularity of harmonic measure","title_sort":"Cusp excursion in hyperbolic manifolds and singularity of harmonic measure"}],"person":[{"role":"aut","roleDisplay":"VerfasserIn","display":"Randecker, Anja","given":"Anja","family":"Randecker"},{"roleDisplay":"VerfasserIn","display":"Tiozzo, Giulio","role":"aut","family":"Tiozzo","given":"Giulio"}]} 
SRT |a RANDECKERACUSPEXCURS2021