Deep learning-enhanced light-field imaging with continuous validation

Visualizing dynamic processes over large, three-dimensional fields of view at high speed is essential for many applications in the life sciences. Light-field microscopy (LFM) has emerged as a tool for fast volumetric image acquisition, but its effective throughput and widespread use in biology has b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wagner, Nils (VerfasserIn) , Beuttenmueller, Fynn (VerfasserIn) , Norlin, Nils (VerfasserIn) , Gierten, Jakob (VerfasserIn) , Boffi, Juan Carlos (VerfasserIn) , Wittbrodt, Joachim (VerfasserIn) , Weigert, Martin (VerfasserIn) , Hufnagel, Lars (VerfasserIn) , Prevedel, Robert (VerfasserIn) , Kreshuk, Anna (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 7 May 2021
In: Nature methods
Year: 2021, Jahrgang: 18, Heft: 5, Pages: 557-563
ISSN:1548-7105
DOI:10.1038/s41592-021-01136-0
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41592-021-01136-0
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41592-021-01136-0
Volltext
Verfasserangaben:Nils Wagner, Fynn Beuttenmueller, Nils Norlin, Jakob Gierten, Juan Carlos Boffi, Joachim Wittbrodt, Martin Weigert, Lars Hufnagel, Robert Prevedel and Anna Kreshuk
Beschreibung
Zusammenfassung:Visualizing dynamic processes over large, three-dimensional fields of view at high speed is essential for many applications in the life sciences. Light-field microscopy (LFM) has emerged as a tool for fast volumetric image acquisition, but its effective throughput and widespread use in biology has been hampered by a computationally demanding and artifact-prone image reconstruction process. Here, we present a framework for artificial intelligence-enhanced microscopy, integrating a hybrid light-field light-sheet microscope and deep learning-based volume reconstruction. In our approach, concomitantly acquired, high-resolution two-dimensional light-sheet images continuously serve as training data and validation for the convolutional neural network reconstructing the raw LFM data during extended volumetric time-lapse imaging experiments. Our network delivers high-quality three-dimensional reconstructions at video-rate throughput, which can be further refined based on the high-resolution light-sheet images. We demonstrate the capabilities of our approach by imaging medaka heart dynamics and zebrafish neural activity with volumetric imaging rates up to 100 Hz.
Beschreibung:13 Seiten Anhang
Gesehen am 29.06.2021
Beschreibung:Online Resource
ISSN:1548-7105
DOI:10.1038/s41592-021-01136-0