Deep learning-enhanced light-field imaging with continuous validation

Visualizing dynamic processes over large, three-dimensional fields of view at high speed is essential for many applications in the life sciences. Light-field microscopy (LFM) has emerged as a tool for fast volumetric image acquisition, but its effective throughput and widespread use in biology has b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wagner, Nils (VerfasserIn) , Beuttenmueller, Fynn (VerfasserIn) , Norlin, Nils (VerfasserIn) , Gierten, Jakob (VerfasserIn) , Boffi, Juan Carlos (VerfasserIn) , Wittbrodt, Joachim (VerfasserIn) , Weigert, Martin (VerfasserIn) , Hufnagel, Lars (VerfasserIn) , Prevedel, Robert (VerfasserIn) , Kreshuk, Anna (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 7 May 2021
In: Nature methods
Year: 2021, Jahrgang: 18, Heft: 5, Pages: 557-563
ISSN:1548-7105
DOI:10.1038/s41592-021-01136-0
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1038/s41592-021-01136-0
Verlag, lizenzpflichtig, Volltext: https://www.nature.com/articles/s41592-021-01136-0
Volltext
Verfasserangaben:Nils Wagner, Fynn Beuttenmueller, Nils Norlin, Jakob Gierten, Juan Carlos Boffi, Joachim Wittbrodt, Martin Weigert, Lars Hufnagel, Robert Prevedel and Anna Kreshuk

MARC

LEADER 00000caa a2200000 c 4500
001 1761425226
003 DE-627
005 20220820005500.0
007 cr uuu---uuuuu
008 210629s2021 xx |||||o 00| ||eng c
024 7 |a 10.1038/s41592-021-01136-0  |2 doi 
035 |a (DE-627)1761425226 
035 |a (DE-599)KXP1761425226 
035 |a (OCoLC)1341417564 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 33  |2 sdnb 
100 1 |a Wagner, Nils  |e VerfasserIn  |0 (DE-588)1189152002  |0 (DE-627)166787974X  |4 aut 
245 1 0 |a Deep learning-enhanced light-field imaging with continuous validation  |c Nils Wagner, Fynn Beuttenmueller, Nils Norlin, Jakob Gierten, Juan Carlos Boffi, Joachim Wittbrodt, Martin Weigert, Lars Hufnagel, Robert Prevedel and Anna Kreshuk 
264 1 |c 7 May 2021 
300 |a 7 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a 13 Seiten Anhang 
500 |a Gesehen am 29.06.2021 
520 |a Visualizing dynamic processes over large, three-dimensional fields of view at high speed is essential for many applications in the life sciences. Light-field microscopy (LFM) has emerged as a tool for fast volumetric image acquisition, but its effective throughput and widespread use in biology has been hampered by a computationally demanding and artifact-prone image reconstruction process. Here, we present a framework for artificial intelligence-enhanced microscopy, integrating a hybrid light-field light-sheet microscope and deep learning-based volume reconstruction. In our approach, concomitantly acquired, high-resolution two-dimensional light-sheet images continuously serve as training data and validation for the convolutional neural network reconstructing the raw LFM data during extended volumetric time-lapse imaging experiments. Our network delivers high-quality three-dimensional reconstructions at video-rate throughput, which can be further refined based on the high-resolution light-sheet images. We demonstrate the capabilities of our approach by imaging medaka heart dynamics and zebrafish neural activity with volumetric imaging rates up to 100 Hz. 
700 1 |a Beuttenmueller, Fynn  |e VerfasserIn  |4 aut 
700 1 |a Norlin, Nils  |e VerfasserIn  |4 aut 
700 1 |a Gierten, Jakob  |d 1985-  |e VerfasserIn  |0 (DE-588)1058043544  |0 (DE-627)796339538  |0 (DE-576)41404083X  |4 aut 
700 1 |a Boffi, Juan Carlos  |e VerfasserIn  |4 aut 
700 1 |a Wittbrodt, Joachim  |e VerfasserIn  |0 (DE-588)1038250919  |0 (DE-627)756835356  |0 (DE-576)167753401  |4 aut 
700 1 |a Weigert, Martin  |e VerfasserIn  |4 aut 
700 1 |a Hufnagel, Lars  |d 1971-  |e VerfasserIn  |0 (DE-588)123869269  |0 (DE-627)706457080  |0 (DE-576)293918457  |4 aut 
700 1 |a Prevedel, Robert  |e VerfasserIn  |4 aut 
700 1 |a Kreshuk, Anna  |e VerfasserIn  |4 aut 
773 0 8 |i Enthalten in  |t Nature methods  |d London [u.a.] : Nature Publishing Group, 2004  |g 18(2021), 5, Seite 557-563  |h Online-Ressource  |w (DE-627)397615310  |w (DE-600)2163081-1  |w (DE-576)118489089  |x 1548-7105  |7 nnas  |a Deep learning-enhanced light-field imaging with continuous validation 
773 1 8 |g volume:18  |g year:2021  |g number:5  |g pages:557-563  |g extent:7  |a Deep learning-enhanced light-field imaging with continuous validation 
856 4 0 |u https://doi.org/10.1038/s41592-021-01136-0  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://www.nature.com/articles/s41592-021-01136-0  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210629 
993 |a Article 
994 |a 2021 
998 |g 123869269  |a Hufnagel, Lars  |m 123869269:Hufnagel, Lars  |p 8 
998 |g 1038250919  |a Wittbrodt, Joachim  |m 1038250919:Wittbrodt, Joachim  |d 700000  |d 721000  |e 700000PW1038250919  |e 721000PW1038250919  |k 0/700000/  |k 1/700000/721000/  |p 6 
998 |g 1058043544  |a Gierten, Jakob  |m 1058043544:Gierten, Jakob  |d 910000  |d 910500  |e 910000PG1058043544  |e 910500PG1058043544  |k 0/910000/  |k 1/910000/910500/  |p 4 
999 |a KXP-PPN1761425226  |e 3941879723 
BIB |a Y 
SER |a journal 
JSO |a {"relHost":[{"recId":"397615310","id":{"eki":["397615310"],"zdb":["2163081-1"],"issn":["1548-7105"]},"origin":[{"publisher":"Nature Publishing Group","dateIssuedDisp":"2004-","publisherPlace":"London [u.a.]","dateIssuedKey":"2004"}],"language":["eng"],"pubHistory":["1.2004 -"],"part":{"text":"18(2021), 5, Seite 557-563","volume":"18","extent":"7","year":"2021","pages":"557-563","issue":"5"},"type":{"media":"Online-Ressource","bibl":"periodical"},"disp":"Deep learning-enhanced light-field imaging with continuous validationNature methods","physDesc":[{"extent":"Online-Ressource"}],"title":[{"title_sort":"Nature methods","subtitle":"techniques for life scientists and chemists","title":"Nature methods"}],"note":["Gesehen am 14. August 2018"]}],"language":["eng"],"person":[{"display":"Wagner, Nils","given":"Nils","family":"Wagner","role":"aut"},{"given":"Fynn","family":"Beuttenmueller","role":"aut","display":"Beuttenmueller, Fynn"},{"display":"Norlin, Nils","family":"Norlin","role":"aut","given":"Nils"},{"family":"Gierten","role":"aut","given":"Jakob","display":"Gierten, Jakob"},{"display":"Boffi, Juan Carlos","role":"aut","family":"Boffi","given":"Juan Carlos"},{"given":"Joachim","role":"aut","family":"Wittbrodt","display":"Wittbrodt, Joachim"},{"given":"Martin","family":"Weigert","role":"aut","display":"Weigert, Martin"},{"display":"Hufnagel, Lars","given":"Lars","family":"Hufnagel","role":"aut"},{"family":"Prevedel","role":"aut","given":"Robert","display":"Prevedel, Robert"},{"display":"Kreshuk, Anna","family":"Kreshuk","role":"aut","given":"Anna"}],"origin":[{"dateIssuedDisp":"7 May 2021","dateIssuedKey":"2021"}],"recId":"1761425226","id":{"eki":["1761425226"],"doi":["10.1038/s41592-021-01136-0"]},"note":["13 Seiten Anhang","Gesehen am 29.06.2021"],"physDesc":[{"extent":"7 S."}],"title":[{"title_sort":"Deep learning-enhanced light-field imaging with continuous validation","title":"Deep learning-enhanced light-field imaging with continuous validation"}],"type":{"media":"Online-Ressource","bibl":"article-journal"},"name":{"displayForm":["Nils Wagner, Fynn Beuttenmueller, Nils Norlin, Jakob Gierten, Juan Carlos Boffi, Joachim Wittbrodt, Martin Weigert, Lars Hufnagel, Robert Prevedel and Anna Kreshuk"]}} 
SRT |a WAGNERNILSDEEPLEARNI7202