Magnetic fields during high redshift structure formation

We explore the amplification of magnetic fields in the high-redshift Universe. For this purpose, we perform high-resolution cosmological simulations following the formation of primordial halos with ∼ ⊙ 107 M, revealing the presence of turbulent structures and complex morphologies at resolutions of a...

Full description

Saved in:
Bibliographic Details
Main Authors: Schleicher, Dominik R. G. (Author) , Latif, M. (Author) , Schober, Jennifer (Author) , Schmidt, W. (Author) , Bovino, S. (Author) , Federrath, C. (Author) , Niemeyer, J. (Author) , Banerjee, R. (Author) , Klessen, Ralf S. (Author)
Format: Article (Journal)
Language:English
Published: 2013 Jul 1
In: Astronomische Nachrichten
Year: 2013, Volume: 334, Issue: 6, Pages: 531-536
ISSN:1521-3994
DOI:10.1002/asna.201211898
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1002/asna.201211898
Verlag, lizenzpflichtig, Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/asna.201211898
Get full text
Author Notes:D.R.G. Schleicher, M. Latif, J. Schober, W. Schmidt, S. Bovino, C. Federrath, J. Niemeyer, R. Banerjee, and R.S. Klessen
Description
Summary:We explore the amplification of magnetic fields in the high-redshift Universe. For this purpose, we perform high-resolution cosmological simulations following the formation of primordial halos with ∼ ⊙ 107 M, revealing the presence of turbulent structures and complex morphologies at resolutions of at least 32 cells per Jeans length. Employing a turbulence subgrid-scale model, we quantify the amount of unresolved turbulence and show that the resulting turbulent viscosity has a significant impact on the gas morphology, suppressing the formation of low-mass clumps. We further demonstrate that such turbulence implies the efficient amplification of magnetic fields via the small-scale dynamo. We discuss the properties of the dynamo in the kinematic and non-linear regime, and explore the resulting magnetic field amplification during primordial star formation. We show that field strengths of ∼ 10-5 G can be expected at number densities of ∼ 5 cm-3. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Item Description:Gesehen am 01.07.2021
Physical Description:Online Resource
ISSN:1521-3994
DOI:10.1002/asna.201211898