Error analysis for a finite element approximation of elliptic dirichlet boundary control problems

We consider the Galerkin finite element approximation of an elliptic Dirichlet boundary control model problem governed by the Laplacian operator. The analytical setting of this problem uses $L^2$ controls and a “very weak” formulation of the state equation. However, the corresponding finite element...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: May, Sandra (VerfasserIn) , Rannacher, Rolf (VerfasserIn) , Vexler, Boris (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: June 25, 2013
In: SIAM journal on control and optimization
Year: 2013, Jahrgang: 51, Heft: 3, Pages: 2585-2611
ISSN:1095-7138
DOI:10.1137/080735734
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1137/080735734
Verlag, lizenzpflichtig, Volltext: https://epubs.siam.org/doi/10.1137/080735734
Volltext
Verfasserangaben:S. May, R. Rannacher, and B. Vexler
Beschreibung
Zusammenfassung:We consider the Galerkin finite element approximation of an elliptic Dirichlet boundary control model problem governed by the Laplacian operator. The analytical setting of this problem uses $L^2$ controls and a “very weak” formulation of the state equation. However, the corresponding finite element approximation uses standard continuous trial and test functions. For this approximation, we derive a priori error estimates of optimal order, which are confirmed by numerical experiments. The proofs employ duality arguments and known results from the $L^p$ error analysis for the finite element Dirichlet projection.
Beschreibung:Gesehen am 07.07.2021
Beschreibung:Online Resource
ISSN:1095-7138
DOI:10.1137/080735734