Error analysis for a finite element approximation of elliptic dirichlet boundary control problems
We consider the Galerkin finite element approximation of an elliptic Dirichlet boundary control model problem governed by the Laplacian operator. The analytical setting of this problem uses $L^2$ controls and a “very weak” formulation of the state equation. However, the corresponding finite element...
Gespeichert in:
| Hauptverfasser: | , , |
|---|---|
| Dokumenttyp: | Article (Journal) |
| Sprache: | Englisch |
| Veröffentlicht: |
June 25, 2013
|
| In: |
SIAM journal on control and optimization
Year: 2013, Jahrgang: 51, Heft: 3, Pages: 2585-2611 |
| ISSN: | 1095-7138 |
| DOI: | 10.1137/080735734 |
| Online-Zugang: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1137/080735734 Verlag, lizenzpflichtig, Volltext: https://epubs.siam.org/doi/10.1137/080735734 |
| Verfasserangaben: | S. May, R. Rannacher, and B. Vexler |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1762336553 | ||
| 003 | DE-627 | ||
| 005 | 20220820012824.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210707s2013 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1137/080735734 |2 doi | |
| 035 | |a (DE-627)1762336553 | ||
| 035 | |a (DE-599)KXP1762336553 | ||
| 035 | |a (OCoLC)1341418164 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 27 |2 sdnb | ||
| 100 | 1 | |a May, Sandra |e VerfasserIn |0 (DE-588)1137955449 |0 (DE-627)895242826 |0 (DE-576)492277303 |4 aut | |
| 245 | 1 | 0 | |a Error analysis for a finite element approximation of elliptic dirichlet boundary control problems |c S. May, R. Rannacher, and B. Vexler |
| 264 | 1 | |c June 25, 2013 | |
| 300 | |a 27 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 07.07.2021 | ||
| 520 | |a We consider the Galerkin finite element approximation of an elliptic Dirichlet boundary control model problem governed by the Laplacian operator. The analytical setting of this problem uses $L^2$ controls and a “very weak” formulation of the state equation. However, the corresponding finite element approximation uses standard continuous trial and test functions. For this approximation, we derive a priori error estimates of optimal order, which are confirmed by numerical experiments. The proofs employ duality arguments and known results from the $L^p$ error analysis for the finite element Dirichlet projection. | ||
| 700 | 1 | |a Rannacher, Rolf |d 1948- |e VerfasserIn |0 (DE-588)108664732 |0 (DE-627)642491224 |0 (DE-576)335024076 |4 aut | |
| 700 | 1 | |a Vexler, Boris |d 1977- |e VerfasserIn |0 (DE-588)124498639 |0 (DE-627)573832749 |0 (DE-576)294200363 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |a Society for Industrial and Applied Mathematics |t SIAM journal on control and optimization |d Philadelphia, Pa. : Soc., 1976 |g 51(2013), 3, Seite 2585-2611 |h Online-Ressource |w (DE-627)266884237 |w (DE-600)1468277-1 |w (DE-576)078589959 |x 1095-7138 |7 nnas |
| 773 | 1 | 8 | |g volume:51 |g year:2013 |g number:3 |g pages:2585-2611 |g extent:27 |a Error analysis for a finite element approximation of elliptic dirichlet boundary control problems |
| 856 | 4 | 0 | |u https://doi.org/10.1137/080735734 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://epubs.siam.org/doi/10.1137/080735734 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210707 | ||
| 993 | |a Article | ||
| 994 | |a 2013 | ||
| 998 | |g 108664732 |a Rannacher, Rolf |m 108664732:Rannacher, Rolf |d 110000 |d 110200 |d 110000 |d 110400 |e 110000PR108664732 |e 110200PR108664732 |e 110000PR108664732 |e 110400PR108664732 |k 0/110000/ |k 1/110000/110200/ |k 0/110000/ |k 1/110000/110400/ |p 2 | ||
| 999 | |a KXP-PPN1762336553 |e 3946447066 | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"name":{"displayForm":["S. May, R. Rannacher, and B. Vexler"]},"note":["Gesehen am 07.07.2021"],"physDesc":[{"extent":"27 S."}],"title":[{"title_sort":"Error analysis for a finite element approximation of elliptic dirichlet boundary control problems","title":"Error analysis for a finite element approximation of elliptic dirichlet boundary control problems"}],"language":["eng"],"relHost":[{"title":[{"title_sort":"SIAM journal on control and optimization","title":"SIAM journal on control and optimization"}],"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"note":["Gesehen am 23.08.25"],"name":{"displayForm":["Society for Industrial and Applied Mathematics"]},"origin":[{"dateIssuedDisp":"1976-","dateIssuedKey":"1976","publisherPlace":"Philadelphia, Pa.","publisher":"Soc."}],"id":{"issn":["1095-7138"],"zdb":["1468277-1"],"eki":["266884237"]},"pubHistory":["Volume 14, issue 1 (1976)-"],"corporate":[{"display":"Society for Industrial and Applied Mathematics","role":"aut"}],"disp":"Society for Industrial and Applied MathematicsSIAM journal on control and optimization","part":{"text":"51(2013), 3, Seite 2585-2611","extent":"27","issue":"3","year":"2013","pages":"2585-2611","volume":"51"},"recId":"266884237","titleAlt":[{"title":"Journal on control and optimization"}],"type":{"bibl":"periodical","media":"Online-Ressource"}}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"role":"aut","display":"May, Sandra","family":"May","given":"Sandra"},{"role":"aut","family":"Rannacher","display":"Rannacher, Rolf","given":"Rolf"},{"given":"Boris","display":"Vexler, Boris","family":"Vexler","role":"aut"}],"id":{"eki":["1762336553"],"doi":["10.1137/080735734"]},"recId":"1762336553","origin":[{"dateIssuedKey":"2013","dateIssuedDisp":"June 25, 2013"}]} | ||
| SRT | |a MAYSANDRARERRORANALY2520 | ||