Error analysis for a finite element approximation of elliptic dirichlet boundary control problems

We consider the Galerkin finite element approximation of an elliptic Dirichlet boundary control model problem governed by the Laplacian operator. The analytical setting of this problem uses $L^2$ controls and a “very weak” formulation of the state equation. However, the corresponding finite element...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: May, Sandra (VerfasserIn) , Rannacher, Rolf (VerfasserIn) , Vexler, Boris (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: June 25, 2013
In: SIAM journal on control and optimization
Year: 2013, Jahrgang: 51, Heft: 3, Pages: 2585-2611
ISSN:1095-7138
DOI:10.1137/080735734
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1137/080735734
Verlag, lizenzpflichtig, Volltext: https://epubs.siam.org/doi/10.1137/080735734
Volltext
Verfasserangaben:S. May, R. Rannacher, and B. Vexler

MARC

LEADER 00000caa a2200000 c 4500
001 1762336553
003 DE-627
005 20220820012824.0
007 cr uuu---uuuuu
008 210707s2013 xx |||||o 00| ||eng c
024 7 |a 10.1137/080735734  |2 doi 
035 |a (DE-627)1762336553 
035 |a (DE-599)KXP1762336553 
035 |a (OCoLC)1341418164 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 27  |2 sdnb 
100 1 |a May, Sandra  |e VerfasserIn  |0 (DE-588)1137955449  |0 (DE-627)895242826  |0 (DE-576)492277303  |4 aut 
245 1 0 |a Error analysis for a finite element approximation of elliptic dirichlet boundary control problems  |c S. May, R. Rannacher, and B. Vexler 
264 1 |c June 25, 2013 
300 |a 27 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 07.07.2021 
520 |a We consider the Galerkin finite element approximation of an elliptic Dirichlet boundary control model problem governed by the Laplacian operator. The analytical setting of this problem uses $L^2$ controls and a “very weak” formulation of the state equation. However, the corresponding finite element approximation uses standard continuous trial and test functions. For this approximation, we derive a priori error estimates of optimal order, which are confirmed by numerical experiments. The proofs employ duality arguments and known results from the $L^p$ error analysis for the finite element Dirichlet projection. 
700 1 |a Rannacher, Rolf  |d 1948-  |e VerfasserIn  |0 (DE-588)108664732  |0 (DE-627)642491224  |0 (DE-576)335024076  |4 aut 
700 1 |a Vexler, Boris  |d 1977-  |e VerfasserIn  |0 (DE-588)124498639  |0 (DE-627)573832749  |0 (DE-576)294200363  |4 aut 
773 0 8 |i Enthalten in  |a Society for Industrial and Applied Mathematics  |t SIAM journal on control and optimization  |d Philadelphia, Pa. : Soc., 1976  |g 51(2013), 3, Seite 2585-2611  |h Online-Ressource  |w (DE-627)266884237  |w (DE-600)1468277-1  |w (DE-576)078589959  |x 1095-7138  |7 nnas 
773 1 8 |g volume:51  |g year:2013  |g number:3  |g pages:2585-2611  |g extent:27  |a Error analysis for a finite element approximation of elliptic dirichlet boundary control problems 
856 4 0 |u https://doi.org/10.1137/080735734  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://epubs.siam.org/doi/10.1137/080735734  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210707 
993 |a Article 
994 |a 2013 
998 |g 108664732  |a Rannacher, Rolf  |m 108664732:Rannacher, Rolf  |d 110000  |d 110200  |d 110000  |d 110400  |e 110000PR108664732  |e 110200PR108664732  |e 110000PR108664732  |e 110400PR108664732  |k 0/110000/  |k 1/110000/110200/  |k 0/110000/  |k 1/110000/110400/  |p 2 
999 |a KXP-PPN1762336553  |e 3946447066 
BIB |a Y 
SER |a journal 
JSO |a {"name":{"displayForm":["S. May, R. Rannacher, and B. Vexler"]},"note":["Gesehen am 07.07.2021"],"physDesc":[{"extent":"27 S."}],"title":[{"title_sort":"Error analysis for a finite element approximation of elliptic dirichlet boundary control problems","title":"Error analysis for a finite element approximation of elliptic dirichlet boundary control problems"}],"language":["eng"],"relHost":[{"title":[{"title_sort":"SIAM journal on control and optimization","title":"SIAM journal on control and optimization"}],"physDesc":[{"extent":"Online-Ressource"}],"language":["eng"],"note":["Gesehen am 23.08.25"],"name":{"displayForm":["Society for Industrial and Applied Mathematics"]},"origin":[{"dateIssuedDisp":"1976-","dateIssuedKey":"1976","publisherPlace":"Philadelphia, Pa.","publisher":"Soc."}],"id":{"issn":["1095-7138"],"zdb":["1468277-1"],"eki":["266884237"]},"pubHistory":["Volume 14, issue 1 (1976)-"],"corporate":[{"display":"Society for Industrial and Applied Mathematics","role":"aut"}],"disp":"Society for Industrial and Applied MathematicsSIAM journal on control and optimization","part":{"text":"51(2013), 3, Seite 2585-2611","extent":"27","issue":"3","year":"2013","pages":"2585-2611","volume":"51"},"recId":"266884237","titleAlt":[{"title":"Journal on control and optimization"}],"type":{"bibl":"periodical","media":"Online-Ressource"}}],"type":{"bibl":"article-journal","media":"Online-Ressource"},"person":[{"role":"aut","display":"May, Sandra","family":"May","given":"Sandra"},{"role":"aut","family":"Rannacher","display":"Rannacher, Rolf","given":"Rolf"},{"given":"Boris","display":"Vexler, Boris","family":"Vexler","role":"aut"}],"id":{"eki":["1762336553"],"doi":["10.1137/080735734"]},"recId":"1762336553","origin":[{"dateIssuedKey":"2013","dateIssuedDisp":"June 25, 2013"}]} 
SRT |a MAYSANDRARERRORANALY2520