Wehrl entropy, entropic uncertainty relations, and entanglement

Wehrl entropy is an entropy associated with the Husimi quasiprobability distribution. We discuss how it can be used to formulate entropic uncertainty relations and for a quantification of entanglement in continuous variables. We show that the Wehrl-Lieb inequality is closer to equality than the usua...

Full description

Saved in:
Bibliographic Details
Main Authors: Flörchinger, Stefan (Author) , Haas, Tobias (Author) , Müller-Groeling, Henrik (Author)
Format: Article (Journal)
Language:English
Published: 28 June 2021
In: Physical review
Year: 2021, Volume: 103, Issue: 6, Pages: 1-13
ISSN:2469-9934
DOI:10.1103/PhysRevA.103.062222
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.103.062222
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.103.062222
Get full text
Author Notes:Stefan Floerchinger, Tobias Haas, and Henrik Müller-Groeling
Description
Summary:Wehrl entropy is an entropy associated with the Husimi quasiprobability distribution. We discuss how it can be used to formulate entropic uncertainty relations and for a quantification of entanglement in continuous variables. We show that the Wehrl-Lieb inequality is closer to equality than the usual Białynicki-Birula-Mycielski entropic uncertainty relation almost everywhere. Furthermore, we show how Wehrl mutual information can be used to obtain a measurable perfect witness for pure state bipartite entanglement, which additionally provides a lower bound on the entanglement entropy.
Item Description:Gesehen am 10.07.2021
Physical Description:Online Resource
ISSN:2469-9934
DOI:10.1103/PhysRevA.103.062222