Wehrl entropy, entropic uncertainty relations, and entanglement

Wehrl entropy is an entropy associated with the Husimi quasiprobability distribution. We discuss how it can be used to formulate entropic uncertainty relations and for a quantification of entanglement in continuous variables. We show that the Wehrl-Lieb inequality is closer to equality than the usua...

Full description

Saved in:
Bibliographic Details
Main Authors: Flörchinger, Stefan (Author) , Haas, Tobias (Author) , Müller-Groeling, Henrik (Author)
Format: Article (Journal)
Language:English
Published: 28 June 2021
In: Physical review
Year: 2021, Volume: 103, Issue: 6, Pages: 1-13
ISSN:2469-9934
DOI:10.1103/PhysRevA.103.062222
Online Access:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.103.062222
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.103.062222
Get full text
Author Notes:Stefan Floerchinger, Tobias Haas, and Henrik Müller-Groeling

MARC

LEADER 00000caa a2200000 c 4500
001 1765994195
003 DE-627
005 20220820032431.0
007 cr uuu---uuuuu
008 210810s2021 xx |||||o 00| ||eng c
024 7 |a 10.1103/PhysRevA.103.062222  |2 doi 
035 |a (DE-627)1765994195 
035 |a (DE-599)KXP1765994195 
035 |a (OCoLC)1341420408 
040 |a DE-627  |b ger  |c DE-627  |e rda 
041 |a eng 
084 |a 29  |2 sdnb 
100 1 |a Flörchinger, Stefan  |d 1982-  |e VerfasserIn  |0 (DE-588)138826374  |0 (DE-627)606153586  |0 (DE-576)309263549  |4 aut 
245 1 0 |a Wehrl entropy, entropic uncertainty relations, and entanglement  |c Stefan Floerchinger, Tobias Haas, and Henrik Müller-Groeling 
264 1 |c 28 June 2021 
300 |a 13 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
500 |a Gesehen am 10.07.2021 
520 |a Wehrl entropy is an entropy associated with the Husimi quasiprobability distribution. We discuss how it can be used to formulate entropic uncertainty relations and for a quantification of entanglement in continuous variables. We show that the Wehrl-Lieb inequality is closer to equality than the usual Białynicki-Birula-Mycielski entropic uncertainty relation almost everywhere. Furthermore, we show how Wehrl mutual information can be used to obtain a measurable perfect witness for pure state bipartite entanglement, which additionally provides a lower bound on the entanglement entropy. 
700 1 |a Haas, Tobias  |d 1995-  |e VerfasserIn  |0 (DE-588)119770888X  |0 (DE-627)1679441035  |4 aut 
700 1 |a Müller-Groeling, Henrik  |e VerfasserIn  |0 (DE-588)1223029123  |0 (DE-627)1742336906  |4 aut 
773 0 8 |i Enthalten in  |t Physical review  |d Woodbury, NY : Inst., 2016  |g 103(2021), 6, Artikel-ID 062222, Seite 1-13  |h Online-Ressource  |w (DE-627)845695479  |w (DE-600)2844156-4  |w (DE-576)454495854  |x 2469-9934  |7 nnas  |a Wehrl entropy, entropic uncertainty relations, and entanglement 
773 1 8 |g volume:103  |g year:2021  |g number:6  |g elocationid:062222  |g pages:1-13  |g extent:13  |a Wehrl entropy, entropic uncertainty relations, and entanglement 
856 4 0 |u https://doi.org/10.1103/PhysRevA.103.062222  |x Verlag  |x Resolving-System  |z lizenzpflichtig  |3 Volltext 
856 4 0 |u https://link.aps.org/doi/10.1103/PhysRevA.103.062222  |x Verlag  |z lizenzpflichtig  |3 Volltext 
951 |a AR 
992 |a 20210810 
993 |a Article 
994 |a 2021 
998 |g 1223029123  |a Müller-Groeling, Henrik  |m 1223029123:Müller-Groeling, Henrik  |d 130000  |e 130000PM1223029123  |k 0/130000/  |p 3  |y j 
998 |g 119770888X  |a Haas, Tobias  |m 119770888X:Haas, Tobias  |d 700000  |d 728500  |e 700000PH119770888X  |e 728500PH119770888X  |k 0/700000/  |k 1/700000/728500/  |p 2 
998 |g 138826374  |a Flörchinger, Stefan  |m 138826374:Flörchinger, Stefan  |d 130000  |d 130300  |d 130000  |d 700000  |d 728500  |e 130000PF138826374  |e 130300PF138826374  |e 130000PF138826374  |e 700000PF138826374  |e 728500PF138826374  |k 0/130000/  |k 1/130000/130300/  |k 0/130000/  |k 0/700000/  |k 1/700000/728500/  |p 1  |x j 
999 |a KXP-PPN1765994195  |e 396424032X 
BIB |a Y 
SER |a journal 
JSO |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 10.07.2021"],"person":[{"display":"Flörchinger, Stefan","family":"Flörchinger","roleDisplay":"VerfasserIn","role":"aut","given":"Stefan"},{"role":"aut","given":"Tobias","display":"Haas, Tobias","family":"Haas","roleDisplay":"VerfasserIn"},{"role":"aut","given":"Henrik","family":"Müller-Groeling","display":"Müller-Groeling, Henrik","roleDisplay":"VerfasserIn"}],"title":[{"title":"Wehrl entropy, entropic uncertainty relations, and entanglement","title_sort":"Wehrl entropy, entropic uncertainty relations, and entanglement"}],"recId":"1765994195","id":{"doi":["10.1103/PhysRevA.103.062222"],"eki":["1765994195"]},"language":["eng"],"physDesc":[{"extent":"13 S."}],"name":{"displayForm":["Stefan Floerchinger, Tobias Haas, and Henrik Müller-Groeling"]},"relHost":[{"origin":[{"dateIssuedKey":"2016","publisherPlace":"Woodbury, NY","dateIssuedDisp":"2016-","publisher":"Inst."}],"disp":"Wehrl entropy, entropic uncertainty relations, and entanglementPhysical review","pubHistory":["Vol. 93, Iss. 1, January 2016-"],"name":{"displayForm":["publ. by The American Institute of Physics"]},"part":{"volume":"103","pages":"1-13","year":"2021","text":"103(2021), 6, Artikel-ID 062222, Seite 1-13","issue":"6","extent":"13"},"corporate":[{"display":"American Institute of Physics","roleDisplay":"Herausgebendes Organ","role":"isb"},{"role":"isb","display":"American Physical Society","roleDisplay":"Herausgebendes Organ"}],"language":["eng"],"id":{"eki":["845695479"],"zdb":["2844156-4"],"issn":["2469-9934"]},"physDesc":[{"extent":"Online-Ressource"}],"recId":"845695479","titleAlt":[{"title":"Atomic, molecular, and optical physics and quantum information"}],"title":[{"title":"Physical review","title_sort":"Physical review"}],"type":{"media":"Online-Ressource","bibl":"periodical"}}],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"28 June 2021"}]} 
SRT |a FLOERCHINGWEHRLENTRO2820