Wehrl entropy, entropic uncertainty relations, and entanglement
Wehrl entropy is an entropy associated with the Husimi quasiprobability distribution. We discuss how it can be used to formulate entropic uncertainty relations and for a quantification of entanglement in continuous variables. We show that the Wehrl-Lieb inequality is closer to equality than the usua...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article (Journal) |
| Language: | English |
| Published: |
28 June 2021
|
| In: |
Physical review
Year: 2021, Volume: 103, Issue: 6, Pages: 1-13 |
| ISSN: | 2469-9934 |
| DOI: | 10.1103/PhysRevA.103.062222 |
| Online Access: | Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.103.062222 Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.103.062222 |
| Author Notes: | Stefan Floerchinger, Tobias Haas, and Henrik Müller-Groeling |
MARC
| LEADER | 00000caa a2200000 c 4500 | ||
|---|---|---|---|
| 001 | 1765994195 | ||
| 003 | DE-627 | ||
| 005 | 20220820032431.0 | ||
| 007 | cr uuu---uuuuu | ||
| 008 | 210810s2021 xx |||||o 00| ||eng c | ||
| 024 | 7 | |a 10.1103/PhysRevA.103.062222 |2 doi | |
| 035 | |a (DE-627)1765994195 | ||
| 035 | |a (DE-599)KXP1765994195 | ||
| 035 | |a (OCoLC)1341420408 | ||
| 040 | |a DE-627 |b ger |c DE-627 |e rda | ||
| 041 | |a eng | ||
| 084 | |a 29 |2 sdnb | ||
| 100 | 1 | |a Flörchinger, Stefan |d 1982- |e VerfasserIn |0 (DE-588)138826374 |0 (DE-627)606153586 |0 (DE-576)309263549 |4 aut | |
| 245 | 1 | 0 | |a Wehrl entropy, entropic uncertainty relations, and entanglement |c Stefan Floerchinger, Tobias Haas, and Henrik Müller-Groeling |
| 264 | 1 | |c 28 June 2021 | |
| 300 | |a 13 | ||
| 336 | |a Text |b txt |2 rdacontent | ||
| 337 | |a Computermedien |b c |2 rdamedia | ||
| 338 | |a Online-Ressource |b cr |2 rdacarrier | ||
| 500 | |a Gesehen am 10.07.2021 | ||
| 520 | |a Wehrl entropy is an entropy associated with the Husimi quasiprobability distribution. We discuss how it can be used to formulate entropic uncertainty relations and for a quantification of entanglement in continuous variables. We show that the Wehrl-Lieb inequality is closer to equality than the usual Białynicki-Birula-Mycielski entropic uncertainty relation almost everywhere. Furthermore, we show how Wehrl mutual information can be used to obtain a measurable perfect witness for pure state bipartite entanglement, which additionally provides a lower bound on the entanglement entropy. | ||
| 700 | 1 | |a Haas, Tobias |d 1995- |e VerfasserIn |0 (DE-588)119770888X |0 (DE-627)1679441035 |4 aut | |
| 700 | 1 | |a Müller-Groeling, Henrik |e VerfasserIn |0 (DE-588)1223029123 |0 (DE-627)1742336906 |4 aut | |
| 773 | 0 | 8 | |i Enthalten in |t Physical review |d Woodbury, NY : Inst., 2016 |g 103(2021), 6, Artikel-ID 062222, Seite 1-13 |h Online-Ressource |w (DE-627)845695479 |w (DE-600)2844156-4 |w (DE-576)454495854 |x 2469-9934 |7 nnas |a Wehrl entropy, entropic uncertainty relations, and entanglement |
| 773 | 1 | 8 | |g volume:103 |g year:2021 |g number:6 |g elocationid:062222 |g pages:1-13 |g extent:13 |a Wehrl entropy, entropic uncertainty relations, and entanglement |
| 856 | 4 | 0 | |u https://doi.org/10.1103/PhysRevA.103.062222 |x Verlag |x Resolving-System |z lizenzpflichtig |3 Volltext |
| 856 | 4 | 0 | |u https://link.aps.org/doi/10.1103/PhysRevA.103.062222 |x Verlag |z lizenzpflichtig |3 Volltext |
| 951 | |a AR | ||
| 992 | |a 20210810 | ||
| 993 | |a Article | ||
| 994 | |a 2021 | ||
| 998 | |g 1223029123 |a Müller-Groeling, Henrik |m 1223029123:Müller-Groeling, Henrik |d 130000 |e 130000PM1223029123 |k 0/130000/ |p 3 |y j | ||
| 998 | |g 119770888X |a Haas, Tobias |m 119770888X:Haas, Tobias |d 700000 |d 728500 |e 700000PH119770888X |e 728500PH119770888X |k 0/700000/ |k 1/700000/728500/ |p 2 | ||
| 998 | |g 138826374 |a Flörchinger, Stefan |m 138826374:Flörchinger, Stefan |d 130000 |d 130300 |d 130000 |d 700000 |d 728500 |e 130000PF138826374 |e 130300PF138826374 |e 130000PF138826374 |e 700000PF138826374 |e 728500PF138826374 |k 0/130000/ |k 1/130000/130300/ |k 0/130000/ |k 0/700000/ |k 1/700000/728500/ |p 1 |x j | ||
| 999 | |a KXP-PPN1765994195 |e 396424032X | ||
| BIB | |a Y | ||
| SER | |a journal | ||
| JSO | |a {"type":{"media":"Online-Ressource","bibl":"article-journal"},"note":["Gesehen am 10.07.2021"],"person":[{"display":"Flörchinger, Stefan","family":"Flörchinger","roleDisplay":"VerfasserIn","role":"aut","given":"Stefan"},{"role":"aut","given":"Tobias","display":"Haas, Tobias","family":"Haas","roleDisplay":"VerfasserIn"},{"role":"aut","given":"Henrik","family":"Müller-Groeling","display":"Müller-Groeling, Henrik","roleDisplay":"VerfasserIn"}],"title":[{"title":"Wehrl entropy, entropic uncertainty relations, and entanglement","title_sort":"Wehrl entropy, entropic uncertainty relations, and entanglement"}],"recId":"1765994195","id":{"doi":["10.1103/PhysRevA.103.062222"],"eki":["1765994195"]},"language":["eng"],"physDesc":[{"extent":"13 S."}],"name":{"displayForm":["Stefan Floerchinger, Tobias Haas, and Henrik Müller-Groeling"]},"relHost":[{"origin":[{"dateIssuedKey":"2016","publisherPlace":"Woodbury, NY","dateIssuedDisp":"2016-","publisher":"Inst."}],"disp":"Wehrl entropy, entropic uncertainty relations, and entanglementPhysical review","pubHistory":["Vol. 93, Iss. 1, January 2016-"],"name":{"displayForm":["publ. by The American Institute of Physics"]},"part":{"volume":"103","pages":"1-13","year":"2021","text":"103(2021), 6, Artikel-ID 062222, Seite 1-13","issue":"6","extent":"13"},"corporate":[{"display":"American Institute of Physics","roleDisplay":"Herausgebendes Organ","role":"isb"},{"role":"isb","display":"American Physical Society","roleDisplay":"Herausgebendes Organ"}],"language":["eng"],"id":{"eki":["845695479"],"zdb":["2844156-4"],"issn":["2469-9934"]},"physDesc":[{"extent":"Online-Ressource"}],"recId":"845695479","titleAlt":[{"title":"Atomic, molecular, and optical physics and quantum information"}],"title":[{"title":"Physical review","title_sort":"Physical review"}],"type":{"media":"Online-Ressource","bibl":"periodical"}}],"origin":[{"dateIssuedKey":"2021","dateIssuedDisp":"28 June 2021"}]} | ||
| SRT | |a FLOERCHINGWEHRLENTRO2820 | ||