Wehrl entropy, entropic uncertainty relations, and entanglement

Wehrl entropy is an entropy associated with the Husimi quasiprobability distribution. We discuss how it can be used to formulate entropic uncertainty relations and for a quantification of entanglement in continuous variables. We show that the Wehrl-Lieb inequality is closer to equality than the usua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Flörchinger, Stefan (VerfasserIn) , Haas, Tobias (VerfasserIn) , Müller-Groeling, Henrik (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 28 June 2021
In: Physical review
Year: 2021, Jahrgang: 103, Heft: 6, Pages: 1-13
ISSN:2469-9934
DOI:10.1103/PhysRevA.103.062222
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevA.103.062222
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevA.103.062222
Volltext
Verfasserangaben:Stefan Floerchinger, Tobias Haas, and Henrik Müller-Groeling
Beschreibung
Zusammenfassung:Wehrl entropy is an entropy associated with the Husimi quasiprobability distribution. We discuss how it can be used to formulate entropic uncertainty relations and for a quantification of entanglement in continuous variables. We show that the Wehrl-Lieb inequality is closer to equality than the usual Białynicki-Birula-Mycielski entropic uncertainty relation almost everywhere. Furthermore, we show how Wehrl mutual information can be used to obtain a measurable perfect witness for pure state bipartite entanglement, which additionally provides a lower bound on the entanglement entropy.
Beschreibung:Gesehen am 10.07.2021
Beschreibung:Online Resource
ISSN:2469-9934
DOI:10.1103/PhysRevA.103.062222