Newtonian binding from lattice quantum gravity

We study scalar fields propagating on Euclidean dynamical triangulations (EDTs). In this work, we study the interaction of two scalar particles, and we show that in the appropriate limit we recover an interaction compatible with Newton’s gravitational potential in four dimensions. Working in the que...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dai, Mingwei (VerfasserIn) , Laiho, Jack (VerfasserIn) , Schiffer, Marc (VerfasserIn) , Unmuth-Yockey, Judah (VerfasserIn)
Dokumenttyp: Article (Journal)
Sprache:Englisch
Veröffentlicht: 22 June 2021
In: Physical review
Year: 2021, Jahrgang: 103, Heft: 11, Pages: 1-15
ISSN:2470-0029
DOI:10.1103/PhysRevD.103.114511
Online-Zugang:Verlag, lizenzpflichtig, Volltext: https://doi.org/10.1103/PhysRevD.103.114511
Verlag, lizenzpflichtig, Volltext: https://link.aps.org/doi/10.1103/PhysRevD.103.114511
Volltext
Verfasserangaben:Mingwei Dai and Jack Laiho, Marc Schiffer, Judah Unmuth-Yockey
Beschreibung
Zusammenfassung:We study scalar fields propagating on Euclidean dynamical triangulations (EDTs). In this work, we study the interaction of two scalar particles, and we show that in the appropriate limit we recover an interaction compatible with Newton’s gravitational potential in four dimensions. Working in the quenched approximation, we calculate the binding energy of a two-particle bound state, and we study its dependence on the constituent particle mass in the nonrelativistic limit. We find a binding energy compatible with what one expects for the ground state energy by solving the Schrödinger equation for Newton’s potential. Agreement with this expectation is obtained in the infinite-volume, continuum limit of the lattice calculation, providing nontrivial evidence that EDT is in fact a theory of gravity in four dimensions. Furthermore, this result allows us to determine the lattice spacing within an EDT calculation for the first time, and we find that the various lattice spacings are smaller than the Planck length, suggesting that we can achieve a separation of scales and that there is no obstacle to taking a continuum limit. This lends further support to the asymptotic safety scenario for gravity.
Beschreibung:Gesehen am 20.08.2021
Beschreibung:Online Resource
ISSN:2470-0029
DOI:10.1103/PhysRevD.103.114511